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Abstract 

 

The COVID-19 pandemic has had a global significant impact on various aspects of 

societies and resulted in a wide range of policy implications. Governments have implemented 

various measures, including lockdowns, mask mandates, and financial support for businesses and 

individuals. Moreover, various organizations and researchers tried to develop models to predict 

its spread. The main aim of these predictions is to help decision-makers take appropriate actions 

to slow the spread of the virus, reduce the number of cases, and mitigate the impact of the 

pandemic on the society and on the economy. 

This thesis focuses on using Artificial Intelligence (AI) techniques, in particular, Machine 

Learning (ML) algorithms to analyze and study factors affecting the likelihood of contracting 

COVID-19 as well as the severity of its symptoms in Palestine. The study will use various ML 

algorithms to determine the best model for predicting both the likelihood of infection and the 

severity of symptoms. The main dataset used in this study is provided by the Palestinian Ministry 

of Health (PMoH). We also used records of hospitalized COVID-19 patients from hospitals 

located in different governorates in the West Bank. 

The main advantage of the proposed approach is its ability to save time and increase the 

accuracy of detecting the likelihood of contracting COVID-19 and the severity of its symptoms 

while using large sets of data. Various models have been created and compared 

The models applied show that several variables, including gender, result date, test type, 

cause of test, age, and age squared, are statistically significant in relation to the probability of 

contracting COVID-19. The results indicate that males tend to have a higher probability of 

contracting COVID-19 than females. Waves of the pandemic and certain regions and test types 

also affect the probability of contracting COVID-19. 
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Moreover, we also found that gender, result date, test type, cause of test, and age are 

statistically significant variables in determining the likelihood of contracting COVID-19. Males 

have a higher probability of contracting COVID-19 compared to females. The probability of 

contracting COVID-19 was higher during specific waves of the pandemic. Certain regions and 

test types also affect the probability of contracting COVID-19. 

Additionally, the analysis revealed that individuals living in certain areas, such as 

Ramallah, Jenin, Jericho, Tubas, and Salfit have a higher probability of contracting COVID-19 

than those living in Gaza. PCR testing shows a higher likelihood of COVID-19 infection 

compared to the AG test. Urban areas have a higher probability of contracting COVID-19 than 

refugee camps. As well, individuals with different reasons for testing and workers or travelers 

have a higher probability of contracting COVID-19. 

The analysis revealed several significant factors influencing the severity of COVID-19 

symptoms. These factors include the hospital where the patient is being treated, the department 

of treatment, eosinophil levels, test type, presence of blood diseases, and type of drugs. Patients 

treated at Yatta hospital have a higher probability of severe symptoms compared to Beit Jala 

Hospital. Treatment in the COVID-ICU department is associated with a higher probability of 

severe symptoms compared to the Intensive Care Department or Cardiac Intensive Care 

Department. High eosinophil levels, both test types, and the presence of blood diseases are also 

linked to a higher probability of severe symptoms. Furthermore, individuals who have not been 

vaccinated have a higher likelihood of experiencing severe symptoms. The best model for 

subjective severity is Model 3, while Model 6 provides the most accurate representation for 

objective severity. 

The study found that most of the models accurately predict the likelihood and severity, 

with values ranging between 80% - 99%, which indicates the strength and accuracy of the 

models. 
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 الملخن

عالميًا وأثر بشكل كبير على مختلف جوانب المجتمعات، وأدى إلى تبعات سياسية واسعة  91-انتشر فيروس كوفيد

النطاق. فقد قامت الحكومات بتنفيذ تدابير مختلفة، بما في ذلك حظر التجوال وإلزامية ارتداء الكمامات وتقديم الدعم المالي 

اولت مختلف المنظمات والباحثون تطوير نماذج للتنبؤ بانتشار الفيروس. ويهدف هذا للأعمال والأفراد. علاوة على ذلك، ح

البحث إلى استخدام تقنيات الذكاء الاصطناعي، وبالأخص خوارزميات التعلم الآلي، لتحليل ودراسة العوامل التي تؤثر في 

ات التعلم الآلي المختلفة لتحديد أفضل نموذج وشدة أعراضه في فلسطين. سيتم استخدام خوارزمي 91-احتمالية الإصابة بكوفيد

للتنبؤ بكل من احتمالية الإصابة وشدة الأعراض. وستستخدم مجموعة البيانات الأساسية في هذه الدراسة التي تم توفيرها من 

فظات في المستشفيات الموجودة في محا 91-قبل وزارة الصحة الفلسطينية. تم استخدام سجلات المرضى المصابين بكوفيد

 مختلفة في الضفة الغربية.

وشدة  91-الميزة الرئيسية للنهج المقترح هي قدرته على توفير الوقت وزيادة دقة اكتشاف احتمالية الإصابة بكوفيد

 في هذا العمل، تم إنشاء العديد من النماذج ومقارنتها. أعراضه باستخدام مجموعات كبيرة من البيانات.

. أشارت 91-ناك عدة متغيرات ذات أهمية إحصائية تؤثر في احتمالية الإصابة بكوفيدأظهرت النماذج المطبقة أن ه

مقارنة بالإناث. تؤثر الموجات المتعاقبة للجائحة وبعض  91-النتائج إلى أن الذكور لديهم احتمالية أعلى للإصابة بكوفيد

 .91-المناطق وأنواع الاختبار أيضًا على احتمالية الإصابة بكوفيد

ج تشير إلى أن الجنس وتاريخ النتيجة ونوع الاختبار وسبب الاختبار والعمر هي متغيرات ذات أهمية إحصائية النتائ

مقارنة بالإناث. كانت احتمالية  91-. فالذكور لديهم احتمالية أعلى للإصابة بكوفيد91-في تحديد احتمالية الإصابة بكوفيد

لجائحة. تؤثر بعض المناطق وأنواع الاختبار أيضًا على احتمالية الإصابة أعلى خلال موجات محددة من ا 91-الإصابة بكوفيد

 .91-بكوفيد

للأفراد الذين يعيشون في مناطق معينة مثل رام الله  91-بالإضافة إلى ذلك، يوجد احتمالية أعلى للإصابة بكوفيد

ر الاختبار بي سي آر احتمالية أعلى وجنين وأريحا وطوباس وسلفيت بالمقارنة بأولئك الذين يعيشون في قطاع غزة. يظه

مقارنة  91-مقارنة بالاختبار بالمضادات الجينية. تظهر المناطق الحضرية احتمالية أعلى للإصابة بكوفيد 91-للإصابة بكوفيد

تلفة للأفراد الذين يخضعون لاختبار لأسباب مخ 91-بمخيمات اللاجئين. علاوة على ذلك، يوجد احتمالية أعلى للإصابة بكوفيد

 وللعاملين أو المسافرين.

. تشمل هذه العوامل المستشفى الذي يتم فيه 91-كشف التحليل عن عدة عوامل مهمة تؤثر في شدة أعراض كوفيد

علاج المريض، وقسم العلاج، ومستويات الإيوزينوفيل، ونوع الاختبار، ووجود أمراض الدم، ونوع الأدوية. المرضى الذين 

فى يطا لديهم احتمالية أعلى لظهور أعراض شديدة مقارنة بمستشفى بيت جالا. قد يكون للإيوزينوفيل يتلقون العلاج في مستش

 دور في تحديد شدة الأعراض أيضًا.
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بشكل عام، يوضح هذا البحث قدرة تقنيات الذكاء الاصطناعي وخوارزميات التعلم الآلي على تحليل وتوقع احتمالية 

في فلسطين. ومن المهم استمرار البحث وتحسين النماذج لتعزيز قدرتها التنبؤية وفهم وشدة أعراضه  91-الإصابة بكوفيد

 العوامل المؤثرة في انتشار الفيروس وتفاعله مع السكان.
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Chapter One: Introduction and Problem Statement 

 

1.1 Introduction  

At the end of 2019, COVID-19 pandemic has appeared for the first time and started to 

spread widely over all countries. Since then, pandemic has returned in waves of varying 

frequency, either high or low, as the nature of the genetic components of the Coronavirus is 

constantly changing. Accordingly, the incidence of infection and the magnitude of symptoms 

associated with the pandemic fluctuate with each progression of waves. To date, governments 

have attempted to impose a range of clinical measures (e.g., construction of Intensive Care Units 

(ICU), quarantine) and non-pharmaceutical measures (social distancing, face mask use, large-

scale closures, etc.) as well as strategies based on vaccination with different types of available 

vaccines, which has had a major impact on the epidemiological curve (Prem et al., 2020). 

However, the situation has gotten out of control in many countries due to either the lack of 

measures or adherence to health prevention measures and social distancing (Lei et al., 2021). 

On March 11, 2020, the World Health Organization (WHO) declared COVID-19 a 

pandemic. Since then, governments have implemented exceptional measures in response to the 

pandemic, including restrictions on travel and the closure of educational institutions, businesses, 

and industrial facilities, resulting in substantial adverse impacts on social and economic 

functions. As a result, the rate of infection and the spread of the pandemic have decreased 

(Salman, 2020). Thus it is crucial to create sophisticated models to monitor the progression of 

the pandemic (i.e., infectious rate) and the severity of the symptoms.  

1.2 Problem Statement 

Several factors boosted the widespread of COVID-19 in Palestine such as not adhering to 

prevention measures or not receiving vaccinations. Most of infected people show low to 

moderate symptoms such as fever, cough, etc. Some COVID-19 patients needed hospitalization 

and ended up in ICU and ventilation machines in case of serious lung damage. In presence with 
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these facts the relatively weak capacity of the health care system in Palestine was unable to cope 

with the pandemic. Accordingly, this thesis attempts to study the phenomenon of the outbreak of 

COVID-19 in Palestine. Particularly, the work will use AI algorithms to model the rate of 

infection of COVID-19 and the severity of its symptoms. 

The main concentration of this thesis is twofold. First, it aims to study the best factors 

that affect the likelihood of contracting COVID-19. The second aim is to study the main factors 

that affect the severity of symptoms for the people who are infected with COVID-19. For both 

goals, the thesis will study different ML models and aim to identify the best in predicting both 

the likelihood and severity of symptoms. 

1.3 Research Questions 

The main goal of this work is to study how efficiently we can predict the likelihood of 

infection with COVID-19 after an outbreak and the severity of symptoms in Palestine. In 

particular, this study aims to answer the following research questions:  

Q1: What are the factors affecting the likelihood of contracting COVID-19? 

Q2: What is the best model to predict the likelihood of contracting COVID-19 and why? 

Q3: What are the factors affecting the severity of COVID-19 symptoms for a hospitalized 

patient? 

Q4: What is the best model to predict the severity of COVID-19 symptoms for a hospitalized 

patient and why? 

1.4 Importance of the study  

Palestine has faced seven waves of COVID-19 so far (According to the weekly and daily 

report of the Palestinian Ministry of Health, 2022). Waves differed in terms of the spread rate, 

symptoms as well as the effect on health care, education, the economy, and other areas. 

Therefore, studying the behavior of COVID-19 and being able to predict the behavior of the 

virus depending on the clinical condition of the patient can help protect many people lives and 

reduce social and economic loses. This type of study contributes to providing a basis for 

researchers due to the lack of studies in Palestine on this topic, as this study is considered one of 

the first, to our knowledge, to predict the behavior of the Corona virus in the country. 
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Particularly, the likelihood of contracting the disease and the severity of its symptoms using AI 

and ML algorithms.  

The advantage of using AI algorithms is its ability to provide predictions that are 

reasonably accurate as long as the parameters do not change. This study will represent a path and 

a preparation for other researchers to conduct further analysis based on the results that the study 

came out with. Further, this study presents a vision for the health care staff in the PMoH on how 

COVID-19 moves, whether in terms of its ability to spread, the strength of its spread, or its 

behavior. The study also provides a set of policy implications based on viable forecasts that 

contribute to assisting decision-makers to limit the spread of the virus, whether by strict or light 

government measures, while accounting for the clinical condition of patients. Furthermore, the 

outcomes of this study could be generalized, by decision makers, to cope with future pandemics. 

1.5 Constraints of the Study 

The following summarizes some of the limitations/obstacles that face this study: 

 Sample boundaries: Hospitalized COVID-19 patients. No information is available about 

the severity of symptoms for those who contracted the pandemic and were not 

hospitalized. 

 Temporal boundaries: The temporal boundaries of the study were limited to the first 

semester of the year 2021/2022. 

 Spatial boundaries: Data registered with the Palestinian Ministry of Health and hospitals. 

1.6 Limitations of the study 

The study faced many difficulties such as the method of collecting data from the database, the 

limited time, the difficulty of obtaining data, and the following are the most influential 

determinants of the study: 

1. Difficulty of obtaining data regarding the sample of patients in intensive care because the 

relative medical reports do not stay in the hospital system for a long time. 

2. The target data was not obtained from the beginning of the pandemic due to the 

dispersion of data on the database on the ministry’s system. 
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3. The sample of patients from the intensive care unit was limited in size compared to the 

initial sample due to the low number of patients and difficulties in obtaining their data. 

4. Sample variables (testing the likelihood of Infection) were limited and there were some 

errors in the data notation of health personnel. 
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Chapter Two: Theoretical Background & Literature Review 

2.1 Introduction  

The recently emerged COVID-19 is one of the viruses that occur in nature on a large 

scale. It is a new type of coronavirus that infects the respiratory system and causes the acute 

respiratory syndrome. It has been called “Corona” because when examined under an electron 

microscope it assumes the shape of a crown, the cause of which is yet unknown (Lei et al., 

2021). To this day, it is still not clear how the COVID-19 pandemic will develop due to the 

mutating virus. The COVID-19 pandemic not only affects the health status of individuals of a but 

also it affects the global public health, nation’s economy, and other social aspects. Accurately 

forecasting the rate of infection and the severity of symptoms posed by the virus is of paramount 

importance. Understanding the trajectory of the virus, such as its mode of transmission, can 

furnish valuable insight into how to effectively curb its spread and minimize its substantial social 

and economic consequences (Lei et al., 2021). 

2.2 Theoretical Background 

COVID-19 appeared first in late 2019 in the Chinese city of “Wuhan”. COVID-19 kept 

spreading quickly within the Chinese boundaries, then started to spread all over the world and It 

has become the most severe public health crisis since the SARS virus outbreak in China in 

2003.(Aljameel et al., 2021). The COVID-19 virus is one of the corona viruses that originally 

infect animals. However, it can be contracted to humans and may cause harmful damage such as 

infecting the respiratory systems, infecting kidney cells, and many others. And when cases of 

infection with the virus occur from one person to another, it often occurs as a result of contact 

with the infected or sick person (Arti & Wilinski, 2022).  

Evidence showes that this virus affects the elderly more than young and children (Glynn 

& Moss,2020). Moreover, the severity of COVID-19 conditions is stronger for the unhealthy as 

compared to healthy individuals without chronic diseases (Prem et al., 2020). 

The COVID-19’s ability to spread quickly caused it to be a global threat. No country in 

the world was excluded from this pandemic. The pandemic has caused all groups of society to 
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undergo an unprecedented change in a short period, a forced change in their lifestyle that is 

destroying the economies of many countries, affecting health systems in all countries of the 

world, preventing movement and stopping flights (Song et al., 2021).  

The world is in captivity to the Coronavirus, this has also reinforced what has been 

imposed on most of the world’s population, namely strict quarantine procedures at home, travel 

restrictions, tests, and constant surveillance. Moreover, the spread of false information on social 

media, and the frightening and terrifying figures reported by various local and international 

media round the clock of a large number of injured and dead due to the emerging Coronavirus, 

leaving people in a state of panic, fear and tension on a scale that humanity has perhaps never 

experienced (Gozes et al., 2020). In some cases, this was also accompanied by feelings of 

isolation, psychological turmoil manifesting as depressive symptoms, and a general sense of 

boredom, which can later evolve into more severe symptoms (Gozes et al., 2020). 

The COVID-19 symptoms may differ from one person to another. Some patients may not 

encounter any symptoms in general, some may have some low symptoms, and some other 

patients may have high symptoms that may lead them to hospitalization. The following are the 

main symptoms that affect humans when contracting COVID-19: 1. aches and discomfort, 2. 

Sore throat, 3. Diarrhea, 4. Eye inflammation, 5. Headache, 6. Loss of taste or odor, 7. Skin rash 

or discoloration of fingers or toes, to mention a few (WHO, 2019). Patients with COVID-19 

recover within 14-16 days because the incubation period for the new Coronavirus is 14 days. The 

COVID-19 pandemic, as declared by the WHO, and its variants are highly dangerous mutant 

viruses that have caused a large number of deaths especially among the elderly and patients with 

chronic diseases (Arti & Wilinski, 2022). 

 After successive waves of the virus in different countries, the need for different 

predictive models became urgent. Countries around the world rely on such predictive models to 

make decisions related to the pandemic and propose new measures and evaluate the effectiveness 

of the measures that have been put in place. For example, Martin-Moreno (2022) argue that 

Long-Short Term Memory (LSTM) models may be versatile and useful, but their practical 

application may vary depending on the specific context and the information being analyzed. 

Therefore, further research is needed to compare and evaluate the performance of these models 
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in similar situations to determine the most reliable and practical methods for use in future 

outbreaks and potential pandemics. 

In addition, the COVID-19 outbreaks have different trends among people. Some 

empirical evidence demonstrated the ability of standard models to accurately predict virus 

outbreaks. For example, Hsu (2020) estimated the likelihood of transmission of the virus from 

one person to another a model called R0, which calculates the average number of passengers on 

flights relative to the number of infected individuals, is used, but it is regarded as a preliminary 

model that does not provide a sufficient assessment of the spread of the virus. The results show 

that the transmissibility rate (R) has decreased, indicating that the implemented measures have 

effectively controlled the spread of the disease. 

 Moreover, important variables that must be taken into account when forecasting the 

spread of the virus are crucial, such as people’s lack of commitment to public safety measures 

and social distancing rules. As a result, well-known epidemiological models, such as the curve-

fitting model and the susceptible-infectious-removed (SIR) model and its extended version 

(eSIR) face various challenges are related to the accuracy of data, the limitations of model 

assumptions, the influence of human behavior, the impact of asymptomatic cases, and the effects 

of control measures to achieve more reliable results. One of the main challenges of these models 

is their ability to handle large data with high accuracy (Purkayastha & Bhattacharyya, 2021). To 

solve such problems, new statistical models have emerged that make different assumptions for 

the modeling (e.g., adding social distancing to the model, curfews, quarantines, etc.) (Samek & 

Müller, 2019). 

Many researchers, whether in the health field or the statistical field, attempted to build 

appropriate mathematical models to predict the outbreak of the pandemic. When it comes to 

predicting the disease, there is a real problem in the availability of related information and data 

about the disease. As far as AI is concerned, ML, which is a type of AI that relies on historical 

data to make predictions, can be utilized for this purpose. But unlike other pandemic - which 

come and go, leaving behind useful information - there is not enough historical information 

about the spread of pandemic COVID-19. By definition, a pandemic is the global outbreak of a 

new disease. This means that, at least initially, there is no enough data to build and train a model 

on (Cockburn et al., 2019). 
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The current status of the COVID-19 pandemic continues to pose a threat to Palestine and 

the rest of the world. The new waves of the virus are becoming increasingly frequent and each 

wave presents different challenges in terms of the spread of the virus and the severity of its 

associated symptoms (Wu et al., 2020). Currently, there have been large numbers of COVID-19 

cases detected globally, with the pandemic affecting countries all over the world, as of 2023, the 

COVID-19 virus, also known as SARSCoV-2, has mutated into a new strain called “BA.5.” This 

variant, part of the Omicron lineage, is rapidly spreading across the globe and affecting countries 

all over the world (World Health Organization, 2023).  

Sachs, et al. (2022) indicated that bolstering national health systems and increasing 

investments in primary and public health is crucial to cope with the pandemic. This includes 

investing in infrastructure, technology, and human resources to enhance health systems’ ability 

to detect, respond to, and control outbreaks. They further recommend developing and 

implementing regulations for the prevention of pandemics from natural spillovers. Such 

measures could include early warning systems, surveillance systems, and protocols for rapid 

identification and response to potential pandemics. These actions would help to lower the risk of 

future pandemics by enabling early detection and response to outbreaks and strengthening the 

capacity of national health systems to effectively respond to potential pandemics (Sachs et al., 

2022).  

There are two main challenges in applying epidemiological models to COVID-19 in 

Palestine. First, the vast majority of cases go undetected because not all infected people are 

tested. Estimates of the percentage of undetected cases depend on the region which is evident by 

data collected by the PMoH. The undetected cases include unexamined primary cases that do not 

feel the symptoms of the disease or infected people who are not being examined, but are 

isolating themselves without going back to health centers (PMoH, 2021). Second, the pandemic 

is remarkably active over time due to various control measures. This was the main reason for the 

occurrence of several noticeable rises in different Palestinian areas.  

The ethical aspect of using artificial intelligence algorithms in predicting the severity of 

COVID-19 symptoms and its spread requires careful consideration. Privacy should be a top 
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priority, ensuring that health data is collected and processed securely and confidentially, 

safeguarding it against unauthorized use or breaches. Additionally, the algorithms must be fair 

and unbiased in predicting symptom severity and virus spread across all social and cultural 

groups, avoiding any discrimination or bias. Transparency and clarity regarding how these 

algorithms work and the variables affecting their predictions are crucial. The processes and 

algorithms should be understandable and verifiable by experts and patients alike, allowing them 

to assess the accuracy and validity of the forecasts(Naik et al, 2022). 

Furthermore, the predictions of AI algorithms should be treated as assistive tools for 

healthcare professionals rather than replacements for their decisions. The final medical decisions 

and outcomes derived from these technologies should be a collective agreement by the 

specialized medical team. Efforts should be made to disseminate knowledge and share the 

findings derived from COVID-19 symptom severity and spread predictions with the scientific 

community and the public. This contributes to research development and broadens the benefits in 

combating the pandemic. 

While leveraging AI technologies in this context can improve preventive measures and 

pandemic responses, adhering to strict ethical principles is essential to maximize their potential 

benefits while avoiding any negative impact on society and individuals. 

2.3 Literature Review  

In this section, we will review the related previous studies that attempted to predict the 

likelihood of infection with COVID-19 the severity of symptoms associated with COVID-19. 

2.3.1 The Likelihood of Infection with COVID-19  

Various studies have looked at predicting the likelihood of infection with COVID-19 

using AI algorithms. For example, the study of Marin-Gomez (2021) aimed to detect the 

possibility of infection with COVID-19 through a comprehensive examination using 

technological systems and the results of PCR tests (polymerase chain reaction), as well as 

analyzing the effect of concurrent factors on the probability of infection. The researcher used 

demographic and clinical variables recorded in the patient’s medical history and used logistic 

regression to indicate the probability of infection. The study was conducted on 7314 individuals 
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who were treated in primary care centers in Catalonia, then the decision tree was used to clarify 

the mechanism of the variables that affected the positive outcome of the examination. The results 

showed that the decision tree gave high accuracy and a good classification of the causes of 

injury. 

Among the studies that examined the likelihood of infection and prediction of the spread 

of COVID-19 using logistic regression is the study by Song and Xie in 2021 aimed to forecast 

individuals’ exposure level to the risk of infection over time using simulation methods based on 

the Extended Kalman Filter. The authors presented a novel approach for predicting the spread of 

COVID-19 that incorporates time-sensitive parameters in its estimation. Results show that the 

accuracy of macro-dynamic models and micro-dynamic models is limited due to the lack of 

detailed and comprehensive COVID-19 datasets. Additionally, while numerous models have 

been developed, they often prioritize short-term disease outbreak predictions and lack projections 

for the medium and long term. Xiong (2020) aimed to use logistic regression to predict infection 

and death rates of COVID-19 in California using ML. The list of independent variables includes 

age, gender, and ethnicity. The results showed that Latinos and African Americans had higher 

test-based infection rates than other ethnic groups. 

Gadekallu et al. (2021) used Convolutional Neural Network (CNN) algorithm as well as 

the Passive-Aggressive algorithm (PA), in addition to the time series and the ARIMA model. 

The research was carried out on 1000 X-ray images and the results revealed that the accuracy 

was above 94% in Jordan, and 88% or higher in Australia. The findings indicate that deep 

learning, also known as AI, has the potential to be used to predict and identify COVID-19. It was 

also found that the disease will spread more in coastal areas, were the place of residence of the 

patient affects the spread of the disease. Therefore, the researchers recommended the necessity of 

providing aid and assistance to people who reside in coastal areas, as they are affected by 

humidity and high temperatures (Gadekallu et al., 2021). 

Eyre et al. (2022) utilized contact testing data from England to conduct a retrospective 

observational cohort study on adult contacts of individuals infected with SARS-CoV-2. The 

researchers utilized multivariable Poisson regression to examine the relationship between 

transmission and the vaccination status of the infected individuals (referred to as “index 
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patients”) and their contacts. The findings showed that 37% of the adult contacts tested positive 

for SARS-CoV-2 using (PCR) testing. The results also revealed that among index patients who 

contracted the alpha variant, receiving two doses of the vaccine was associated with a lower rate 

of PCR positivity among their contacts (Eyre et al., 2022). 

Nordström & Nordström (2022) aimed to assess the efficacy of COVID-19 vaccination 

against infection, hospitalization, and death in the general population of Sweden for 9 months 

post-vaccination. The researchers used data from Swedish nationwide registers in a retrospective, 

total population cohort study. The findings suggest that there may be some differences in vaccine 

effectiveness between men and women, as well as between older and younger individuals. The 

study also discovered that vaccine effectiveness against SARS-CoV-2 infection of any severity 

declined over time across all subgroups, at varying rates based on vaccine type. However, 

vaccine effectiveness against severe COVID-19 appeared to be better sustained, although some 

decline was evident after 4 months. The results of this study reinforce the need for a third 

vaccine dose as a booster  (Nordström et al., 2022). 

The study conducted by Wake et al. (2020) aimed to investigate the risk of nosocomial 

transmission of COVID-19 in hospitals and its impact on patients with underlying medical 

conditions. The study took place at an NHS Trust located in South London., out of 662 

hospitalized COVID-19 patients, 45 (6.8%) likely acquired the virus while in the hospital. 

Surprisingly, these patients did not show respiratory or influenza-like symptoms upon admission 

but developed symptoms and tested positive for SARS-CoV-2 through PCR testing more than 7 

days after being admitted (for 38 patients, it took more than 14 days). The majority of these 

patients (88.9%) had shared a ward with a confirmed COVID-19 case before testing positive. To 

reduce the risk of nosocomial transmission, implementing a triage system that combines clinical 

assessment and rapid SARS-CoV-2 testing has proven effective. This system facilitates the 

segregation of patients, minimizing exposure to COVID-19 in shared wards. As hospitals resume 

regular services and potential future waves of COVID-19 admissions loom, preventing 

nosocomial transmission is crucial. Point-of-care diagnostic tools can aid clinical assessment by 

swiftly identifying COVID-19 cases, thereby decreasing transmission risk within healthcare 

facilities (Wake et al., 2020). 
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De Bruyn et al. (2022) aimed to examine the incidence, risk factors, and common 

pathogens associated with secondary bacterial infections in very ill COVID-19 patients. The 

study was conducted at the intensive care unit (ICU) of Jessa Hospital in Belgium. Among the 94 

included patients, 68% acquired at least one secondary bacterial infection during their ICU stay. 

Secondary pneumonia was the most common infection (65.96%), followed by bacteremia of 

unknown origin (29.79%) and catheter-related sepsis (14.89%). Male gender, diabetes mellitus, 

and cumulative corticosteroid dose were identified as risk factors for secondary bacterial 

infections. Gram-negative bacilli were the primary pathogens in secondary pneumonia, while 

Gram-positive cocci were predominant in bacteremia of unknown origin and catheter-related 

sepsis. These findings emphasize the high incidence of secondary bacterial infections in critically 

ill COVID-19 patients and provide valuable insights into risk factors and pathogen profiles for 

effective treatment strategies (De Bruyn et al., 2022). In their study, Yang and Wang (2021) 

proposed a mathematical model to examine the dynamics of the transmission of COVID-19. The 

generated model incorporates human-to-human and environment-to-human transmission 

pathways. The model also incorporates different transmission rates to capture the changing 

epidemiological characteristics over time. The researchers focused on Hamilton County as a 

representative case study for the COVID-19 situation in the United States By fitting the model to 

publicly reported data and conducting simulations, the study revealed that the environment may 

play a significant role in the transmission and spread of the coronavirus. The results highlighted 

the importance of considering environmental factors in understanding the dynamics of COVID-

19 transmission. Furthermore, the researchers used the model to simulate various epidemic 

scenarios and provide short-term forecasts for the development and trends of COVID-19 

specifically in Hamilton County (Yang & Wang, 2021). 

2.3.2 The Severity of Symptoms of COVID-19  

 Various studies benefit from AI algorithms to predict the severity of COVID-19. Laatif 

et al. (2022) used a sample of 337 patients infected with COVID-19 from Sheikh Zayed Hospital 

in Morocco. Both biological and non-biological data are used to predict the severity of symptoms 

such as blood tests, platelets, and white blood cells. Patient data was used, based on the analysis 

of topological data in a way called approximation and Unified Manifold Projection (UMAP). 

Various ML models were applied in their study with good performance encountered to help 
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hospitals and medical facilities prioritize patients and recommend who has a higher priority for 

the hospital stay based on the degree of severity (Laatifi et al., 2022). 

Another study by Nemati and Ansary (2020) aimed to examine the clinical status of 

patients while they were hospitalized. Specifically, the study sought to forecast the survival rate 

and length of stay for 1182 patients. The research was based on an open-access dataset and 

employed seven machine-learning algorithms. The findings showed that Gradient Boosting 

models outperformed the other algorithms in making accurate predictions. This could be useful 

for healthcare providers in making decisions during the pandemic  (Nemati et al., 2020).  

Another study to predict and diagnose the symptoms of COVID-19 was presented by (D. 

Xiong et al., 2020). In their study, a dataset of 287 patients with severe and non-severe cases 

represented in 23 features was used. Three ML models were established using support vector 

machines, logistic regression, and Random Forest. Their findings indicate that Random Forest 

could be a useful predictive model to identify the severity of symptoms of COVID-19 (Y. Xiong 

et al., 2022).  

Some studies examined the relationship between the severity of symptoms and survival. 

For instance, Aljameel et al. (2021) examined the survival rate of patients by proposing a 

predictive model for the early identification of COVID-19 patient outcomes through 

characteristics monitored while at home quarantine. A dataset of 287 patients with 20 features 

was used. The Synthetic Minority Oversampling Technique (SMOTE) was employed to region 

the class imbalance in the dataset. Three machine learning algorithms, logistic regression, 

random forest, and extreme gradient boosting, were utilized and compared to construct the 

models. The results showed an accuracy of 95%, which concludes that their model can help 

decision-makers and health care practitioners in the early identification of patients at risk from 

COVID-19 (Aljameel et al., 2021). 

In the study by Chowdhury et al. (2021), machine learning was employed to develop a 

prognostic model for forecasting the mortality risk of COVID-19 patients. The research was 

conducted on 375 patients in Wuhan and utilized the XGBoost feature selection method to 

establish a monogram-based model. The findings indicated that the model had remarkable 

calibration and discrimination in predicting death probability, achieving a death probability of 
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80%. The authors suggested using this model for pre-disclosure and stratifying patients into low, 

medium, and high disease severity categories to aid physicians in making more informed 

decisions (Chowdhury et al., 2021).  

Xiong et al. (2020) conducted a study aimed at determining a combination of four clinical 

indicators that predict severe or critical symptoms in COVID-19 patients. SVM algorithms were 

utilized and the relationship between age and protein content was examined to assess the 

patient’s condition. The research was carried out on 336 patients. The prediction results showed 

a low rate of severe-critical symptoms, indicating a limited occurrence of severe or critical cases. 

In the study sample, patients with both severe and mild symptoms sometimes developed critical 

or severe symptoms (D. Xiong et al., 2020). 

One of the important studies that investigated the severity of symptoms using machine 

learning is a study by Yan et al. (2020). The study aimed to predict criticality in patients with 

severe COVID-19 infection using three clinical features: a machine learning-based prognostic 

model with clinical data in Wuhan. A sample of 375 patients was taken where 201 patients were 

in good health while the rest are dead. A machine learning model was built using the Gradient 

Boosting (XGBoost) algorithm. The model that was built was able to forecast danger death in 

COVID-19 patients. In the study, the average age of patients was around 58 years, with high 

fever, cough, fatigue, respiratory issues, protein sensitivity, and enlarged lymph nodes as the 

most common severe symptoms. The utilized model displayed remarkable outcomes, revealing 

that lymphocytes (LDH) and Highly Sensitive C-Reactive Protein (HS-CRP) were prevalent 

among the cases. This model helps in forecasting the number of fatalities and the likelihood of a 

patient reaching a fatal stage and enables healthcare professionals to take necessary precautions 

such as examinations and others to prevent the spread of the disease. (Yan et al., 2020). 

In Jordan, Hatmal et al (2021) predict COVID-19 symptoms using AI algorithms such as 

RF, XGBOOST and K-star through a clinical case study of 2213 patients who were vaccinated 

with various types of vaccines. It was found that the participants developed some symptoms of 

COVID-19, such as fever and emaciation, and the effects were strong for the elderly. RF, 

XGBoost, and MLP (multilayer perceptron ) provided high prediction accuracies of the severity 

of side effects of different vaccines according to the clinical condition of patients (Hatmal et al., 

2021). 
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The related studies were not limited to the use of AI algorithms, but parametric and non-

parametric analysis methods were also used. The study conducted by Alizadeh sani et al. (2021) 

analyzed categorical data from 319 patients presenting symptoms of COVID-19, including fever, 

tightness in the chest, extreme weakness, and shivering. To compare the data between groups, a 

sum rank Wilcoxon test was used. The results indicated that certain medications and chronic 

conditions such as rheumatism, infections, and asthma were linked to the severity of fatigue and 

COVID-19 symptoms. However, factors such as liver and kidney disease, cough with phlegm, 

eczema, conjunctivitis, tobacco use, and chest pain were not found to be significant in predicting 

symptom severity. The study suggests that patients with chronic conditions may be at a higher 

risk of severe fatigue during COVID-19 infection (Alizadehsani et al., 2021). 

Gui et al. (2021) collected data from 43 patients in Chongqing through its health centers. 

Patient demographic variables such as gender, age, and place of residence were used. Results 

show that age and levels of ESR (Erythrocyte Sedimentation Rate), D-D (Differential Diagnosis 

Diastolic Dysfunction), ALB (Albumin Is A Protein Made By Your Liver), and IL6 (Interleukin 

6 (IL-6), Receptor Proteins) have a strong correlation with the status of COVID-19 patients. The 

ESR level is an indicator to distinguish between COVID-19 patients whose condition is 

considered serious. These techniques help specialists pay close attention to patients in the early 

stages of infection (Gui et al., 2021). 

Kalem et al. (2021) used a sample of 144 patients to predict the severity of symptoms of 

COVID-19. They used the usual simple analysis such as the standard deviation, the arithmetic 

mean, and the nonparametric tests such as the Mann-Whitney test, Kruskal, the ace and chi-

squared studying. The results show that the most influential variables were cough, fever, and 

sore throat. Based on results, the researchers recommended the necessity of therapeutic measures 

during the clinical treatment of patients (Kalem et al., 2021). 

Mancilla-Galindo (2021) observed the retrospective effect of patients infected with 

COVID-19 and the relationship of age with infection severity. The study was conducted on the 

elderly who received health care, numbering 688 hospitals in Mexico City, and they were 

classified into eight groups. Using logistic regression and compared to the onset of symptoms, 

the elderly are more in need of medical care and more likely to die(Mancilla-Galindo et al., 

2021). 

https://www.acrobiosystems.com/L-326-IL-6.html
https://www.acrobiosystems.com/L-326-IL-6.html
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Among the studies that examined the incidence of various diseases and, their relationship 

to the diagnosis of symptoms of infection with COVID-19 is the study of Wang et al.,(2020). 

They studied the level of lipids in the blood of patients with COVID-19, and then they analyzed 

the relationship between the level of lipids in the blood and symptoms of COVID-19. They 

conducted a clinical analysis of a sample of 228 patients with COVID-19 in the period of 

January 17, 2020, and March 14, 2020. By controlling the age and gender of the patient, results 

showed that the severity of symptoms with COVID-19 was associated with high levels of fats in 

the blood (G. Wang et al., 2020). 

Jiang et al. (2020) build a framework through AI algorithms to predict the progression of 

the disease from mild to severe cases to provide rapid support for clinical trials. Researchers used 

real patient data to predict patients’ acute respiratory distress syndrome (ARDS), based on data 

from two hospitals in Wenzhou, Zhejiang, China. The researchers concluded that there is an 

increase in red and white blood cells and the presence of severe pain in the muscles. Remarkably, 

the accuracy rate of the model was high, reaching 80% for predicting the severity of the 

symptoms of the disease (Jiang et al., 2020) 

In a systematic review, Xiang et al (2021) show that 23 studies of the severity of 

symptoms of COVID-19 were based on the Bayesian method, agent-based model, and 

generalized growth model. This study analyzed various epidemiological parameters related to the 

COVID-19 pandemic. The ranges of the incubation period, serial interval, infectious period, and 

generation time were determined. The majority of models assumed consistency between the 

latent period and incubation period. Results show that travel restrictions had the most significant 

impact on prediction differences under different public health strategies. Contact tracking, social 

isolation, and improved quarantine and reporting rates were considered crucial for epidemic 

prevention and control. The input parameters showed significant differences in predicting the 

severity of the epidemic spread. Thus, caution should be exercised when formulating public 

health strategies based on mathematical model predictions (Xiao et al., 2021).  

Xiong et al. (2022) used various ML techniques including (RF), Support Vector Machine 

(SVM), and Logistic Regression (LR) for predicting COVID‑19 severity and to predict treatment 

outcomes. This model was adopted in the JinYinTan hospital and the result showed that the RF 

algorithm was the best in terms of accuracy to identify patients with severe COVID-19 . 
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Martinez & Martinez et al. (2022) used a logistic regression model with 14 variables to 

predict severity of symptoms in patients with COVID-19 in Mexico. The sample included 

1,435,316 patients. The result showed that the model could predict the severity of COVID-19 in 

Mexican hospital patients. 

The study by Vigon et al. (2021) conducted a meta-analysis and found that the most 

frequent variables used to predict severity were age, followed by immune response and 

vaccination. The results showed that if these variables are combined, the patient may be at a 

higher risk for developing kidney and liver disease, tissue swelling, and heart muscle swelling. 

The researchers emphasized the importance of considering factors that can lead to complications 

in COVID-19 patients and the need for further research on rare cases (Vigón et al., 2021) 

Jain   & Yuan’s (2020) used meta-analysis and a sample included seven studies and 

focused on people with chronic diseases above 46 years. Results show that there is a clear 

deterioration in the clinical status of males more than females in all the studies analyzed and they 

were exposed to shortness of breath and even to the intensive care unit in hospitals which may 

end in death (Jain & Yuan, 2020). 

 

2.3.3 COVID-19 in Palestine  

Abu-Zaineh and Awawda (2022) examine the epidemiological and economic 

consequences of the COVID-19 pandemic. They employ a Dynamic Stochastic General 

Equilibrium (DSGE) model that considers variations among various population segments. The 

findings confirm that providing a vaccine will resolve the ongoing argument about prioritizing 

lives or economies. The provision of a vaccine has an immediate and positive effect both on a 

micro and macro scale  (Abu-Zaineh & Awawda, 2021). 

El-Sokkary (2021) aims to examine the most common risk factors affecting health care 

providers in Palestine. Clinical and epidemiological characteristics were evaluated. The silent 

spread of the disease among health care providers in hospitals and health centers was shown. The 

researchers recommended the need to re-evaluate preventive measures in health centers. 
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Shadeed & Alawna (2021) present a system to estimate the COVID-19 vulnerability 

index using Geographical Information System (GIS) and Multi-Criteria Decision Analysis 

(MCDA). They used 9 criteria factors (population, population density, elderly population, 

accommodation and food service activities, school students, chronic diseases, hospital beds, 

health insurance, and pharmacy). The authors created a map that highlights each governorate into 

COVID-19 vulnerability classes (very low, low, medium, high, very high). The developed map 

aims to help in making decisions in the prediction of COVID-19 in the West-Bank. Even this 

study helps decision-makers in highlighting which governorates are more vulnerable than others, 

but they did not use predictive models as well they did not use up-to-date data from the ministry 

of health (Shadeed & Alawna, 2021). 
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Chapter Three: Methodology 

3.1 Introduction 

In this study, AI, in particular, ML algorithms will be used to fulfill our research 

objectives. The following summarizes the data and models that will be used to answer each of 

the research questions.  

3.2 Data Description 

Two datasets will be used in this thesis. The first consists of all members of the 

Palestinian community who have taken the COVID-19 test in the West Bank during the period 

January 2020 to January 2022. It is worth noting that the daily number of people who take the 

test ranges from 2000 to 5000 persons. This dataset is obtained from the PMoH. The data 

provides information about individuals’ demographic characteristics, the date of the test, and test 

results. The following summarizes the main variables included in the dataset and will be used to 

answer the first question.  

Dependent variable: COVID-19 Status (test result). A binary variable that takes 1 if the 

individual is contracted with COVID-19 (true = Positive).  

 

Independent variables: 

 Age: numerical variable of the patient’s age. 

 Gender: categorical variable (Male, Female). 

 Number of waves: (1st… 5th). This variable will be measured based on the date of 

test such that, 1st from (6/3/2020 - 8/7/2020), 2nd (1/8/2020 - 10/10/2021), 3rd 

(20/10/2020 - 1/4/2021), 4th (1/9/2021 - 1/12/2021), 5th (25/12/2021 - 28/2/2022) 

 Sample date: date of the test. 

 Result date: date of tests’ results.  

 Cause: a categorical variable that indicates the reason for conducting the COVID-

19 test (Special request/ contacts with others/having any of COVID-19 

symptoms/issuance of a certificate/ traveling/ green line workers/ suspended/ 

medical staff/hospital admission/ transfers/ contacts/ others). 

 Status: categorical variable (Follow up, New, Resampling). 
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 Cycle threshold (C.T.): results will be positive if the CT value is below a certain 

threshold (24 – 35). In general, if the value of the CT is below the threshold, then 

the probability of transmitting the virus will be higher. 

 District: categorical variable indicating the region/governorate.  

 Region (locality type): categorical variable indicating the (camp/ rural/city) 

 Test type: categorical variable of the type of COVID-19 test (AG, PCR). The 

rapid test may give false results.  

 

The second dataset will be used to predict factors affecting the severity of COVID-19 

symptoms. This dataset is obtained from hospitals and thus contains information about 

hospitalized patients only. This dataset contains information about patients’ characteristics such 

as demographics, health characteristics, and COVID-19 statistics as shown below. The following 

summarized variables in this dataset that will be used to answer the second question.  

Dependent variable:  

The two measures of severity being used in the study are: 

1. Doctor-assessed Severity of COVID-19 Symptoms: This variable is present in the 

data and is subjective in nature, as it is based on the doctor’s evaluation. 

2. Researcher-calculated Severity of COVID-19 Symptoms: This is an objective 

measure of severity that is based on the patient’s symptoms as recorded in the 

data and a review of related literature. This measure will take the following 

values: low severity; moderate severity, and high severity.  

The variables that will be used to build the severity index are:  

 The need for oxygen O2: a binary variable that takes 1 if the oxygen level in the 

blood is less than 90%. In this case the patient must be placed on an oxygen 

supply device (this was used by (Aljameel et al., 2021). 

 Respiration: a binary variable (high respiration ≥ 17 per minute for males or ≥ 

19 per minute for females, low respiration ≤ 15, normal respiration = 16 for 

males and = 18 for females) (this was used by (Aljameel et al., 2021)..  
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 White Blood Cells (WBC): a binary variable (high ≥ 11, low ≤ 4.6, moderate 

between 4.6 – 11). A high white blood cell count indicates that the immune 

system is fighting off pathogens. A low white blood cell count indicates that, 

there is an injury or a condition that destroys cells faster than they are formed 

(this was used by Laatif et al. (2022)).  

 Oxygen Saturation (SPO2): a binary variable in which the saturation is less than 

90% (risk), and above 90% (no risk) (this was used by (Aljameel et al., 2021) &  

(Chowdhury et al., 2021). 

 Tired: a binary variable (Yes/No) indicating if a patient is feeling tired or 

not(this was used by(Yan et al., 2020)).  

 Shortness of Breath (SOB): a binary variable (Yes/No) (this was used by(Yan et 

al., 2020) & (Jain & Yuan, 2020)). 

 The number of days in ICU(this was used by(Gadekallu et al., 2021). 

 Temperature: categorical variable (high temperature ≥ 38.90 (children) and ≥ 

39.40 (older age), (low temperature ≤ 350), and normal temperature (within the 

range 35.10 – 38.80 ) (this was used by(Chowdhury et al., 2021)). 

 Radiology (MRI) (ECG) or (X–ray): a binary variable (Yes/No) that shows if 

the patient requires an X–ray for the chest or not (this was used by(Gadekallu et 

al., 2021).(D. Xiong et al., 2020) 

 The patient’s clinical condition changes over time: categorical variable 

(Better/Worse/Worse than better) that measures if the condition of patients is 

improving or worsening over time(this was used by(D. Xiong et al., 2020)). 

 Symptoms over time: categorical variable (Increased/Decreased) that shows if 

the patient’s clinical condition has decreased or increased in severity.  

 Cough: binary variable (Yes/No) (this was used by(D. Xiong et al., 2020)). 

 ICU (on a bed): binary variable (Yes/No) shows if a patient needs to be 

admitted to the ICU (this was used by (Jain & Yuan, 2020)). 
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Independent variables:  

 Gender: a binary variable (Male/Female).  

 Age: numerical variable. Elderly people generally have more severe COVID-19 

conditions.  

 District: categorical variable indicating the governorate. 

 High blood pressure: categorical variable in which, high blood pressure ≥ 140, 

low blood pressure ≤ 10, and normal blood pressure in the range 139 – 91.  

 Different symptoms: Dizziness, Epigastria pain, vomiting, Loss of appetite, 

Fatigue … etc. 

 Type of drug treatment: categorical variable (antibiotic, corticosteroid, …) 

showing the category of drugs a patient has received. 

 Laboratory: categorical variable indicating the type of lab test a patient has 

undergone. 

 EOSINPHILS: categorical variable (high ≥ 3, low ≤ 1, moderate between 1.1 – 

2.9), which is a disease-fighting white-blood-cell and indicates if there is cancer, 

allergic reaction, or other types of infections such as parasitic. A high eosinophil 

count: a numerical variable that indicates if the body is producing, a high amount 

of eosinophil has to fight a bacteria, virus, or parasite. Therefore, a high 

eosinophil count can indicate the existence of an infection. 

 Vaccinated: a binary variable (Yes/No) indicating if a patient is vaccinated 

against COVID-19 or not. 

 Chronic diseases: a binary variable (Yes/No) indicating if a patient has a chronic 

disease or not. 

 Type of chronic disease: categorical variable of chronic diseases (Asthma 

(respiratory diseases), blood pressure, diabetes, cancer, …). 

 Test type: categorical variable of the type of COVID-19 test (Rapid Test, PCR, 

Both).  

It is worth noting that the second dataset is by default a subset of the first dataset. 

However, the individual ID is missing from the first dataset that was given to the researcher from 

the PMoH. Thus merging both datasets is not a possible task.  
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3.3 Data exploration 

After organizing the raw data, we conducted an exploration to determine the importance of 

variables and to verify high correlations among variables in order to prevent multicollinearity. 

 

3.3.1 The Likelihood of Infection  

 

The following table describes the distribution of individuals who conducted COVID-19 

tests (the first dataset). 

Table 3.1. The distribution of individuals who conducted COVID-19 tests 

  Frequency Percent 

Gender Male 235906 60.4 

Female 154420 39.6 

Total 390326 100.0 

  Frequency Percent 

Age Less than 25 135623 34.7 

25 to 49 176251 45.2 

50 to 75 71332 18.3 

More than 75 7120 1.8 

Total 390326 100.0 

  Frequency Percent 

Result 

date 

First wave 5147 1.3 

Second wave 82457 21.1 

Third wave 82056 21.0 

Fourth wave 95894 24.6 

Fifth wave 124772 32.0 

Total 390326 100.0 

  Frequency Percent 
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Status New 385724 98.8 

Follow-up 3687 0.9 

Resampling 915 0.2 

Total 390326 100.0 

  Frequency Percent 

District Ramallah 83112 21.3 

Bethlehem 32913 8.4 

Hebron (AlKhalil) 67385 17.3 

Jenin 42972 11.0 

Jericho 18962 4.9 

Jerusalem 13895 3.6 

Nablus 63091 16.2 

Qalqilia 13469 3.5 

Tulkarm 29588 7.6 

Tubas 9927 2.5 

Salfit 14783 3.8 

Yatta 84 0.0 

Gaza 145 0.0 

Total 390326 100.0 

  Frequency Percent 

Region Urban 144041 36.9 

Rural 231830 59.4 

Camp 14455 3.7 

Total 390326 100.0 

  Frequency Percent 

Test Type PCR 338639 86.8 

AG 51687 13.2 

Total 390326 100.0 
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  Frequency Percent 

Result2 Injured 74113 19.0 

Not injured 316213 81.0 

Total 390326 100.0 

  Frequency Percent 

Cause of 

test 

Contact with others 174314 44.7 

Workers or travelers 84164 21.6 

Medical 22323 5.7 

Else 109525 28.1 

Total 390326 100.0 

 

             

 The table below shows the mean, minimum, and maximum of the numerical variables. 

 

Table 3.2. mean values of numerical variables   

Attribute N Minimum Maximum Mean Std. Deviation 

Age 390326 1.0 100.0 34.261 17.4796 

 

Table 3.9 shows that male consists 60.4%, and female consists 39.6% of the sample, the 

young (–less than 49 years old) consists about 79.9% against 21.1% for old persons. 

The infection rate was the lowest in the first wave, consisting of 1.3%. The second, third, fourth 

and fifth waves had higher percentages of positive cases, with percentages of around 21.1%, 21 

%, 24.6%, 32.0% respectively. The status variable shows that 98.8% of the cases were new and 

1.2% were follow-up cases or resampling. 

The governorates of Ramallah, Hebron, and Nablus had the highest percentage of individual who 

took a COVID-19 test as compared to other governorates, with percentages of 21.3%, 17.3%, 

and 16.2% respectively. Individuals living in rural areas consisted about 59.4% of the sample 

against 36.9% and 3.7% of those living in urban areas and camps respectively.  
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The test type used was PCR for 86.8% of the sample and AG for 13.2%. The sample was 

also divided into two categories regarding injury: 19% were injured and 81% were not injured. 

The reasons for taking the test were categorized as: Contact with others (44.7%), Workers or 

travelers (21.6%), and Medical (5.7%). 

 

3.3.2 Variables Significance Based on the Likelihood  

 

As an initial step, visualizing the relationships between the attributes and the dependent 

variable helps to understand their significance. Moreover, this will help in identifying which 

ones may have an impact on the models. To verify that the differences in the frequency 

distribution are significant, we perform Chi-square tests. The results showed that all categorical 

variables had p-values less than 0.05, indicating that the differences are significant (in two-way 

frequency distribution) between each given attribute and the dependent variable. 

 

Table 3.3. p-value for Chi-square tests variables   

 

Variable p-value 

Gender  < 0.00  

Age  < 0.00  

Result date  < 0.00 

Cause  < 0.00 

Status  < 0.001  

District  < 0.001 

Region  < 0.001  

Test type  < 0.001 
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3.3.3 Multicollinearity check  

 

To assess the presence of multicollinearity among numerical variables, a correlation 

matrix was generated using Pearson’s Correlation algorithm with categorical variables converted 

to dummy variables. The results are depicted in the following correlation matrix chart. 

Table 3.4. The correlation matrix between dependent variable in likelihood of infection 

model (result2) and the independent variables  

  

Result2 

Pearson 

Correlation 
Sig. (2-tailed) N/P 

Gender -.084** 0.000 Negative correlation 

Age -.028** <0.001 Negative correlation 

Result date .074*** 0.000 Positive correlation 

Status -.045** <.001 Negative correlation 

District -.038** <.001 Negative correlation 

Region -.006** <.001 Negative correlation 

Test type -.110** 0.000 Negative correlation 

Cause of test 0.079*** 0.000 Positive correlation 

***. Correlation is significant at the 0.001 level (2-tailed). 

N/P: Negative correlation, Positive correlation 

 

As indicated in the table, there is no high correlation between the categorical variables. 

Accordingly, none of them will be removed from the models as the Pearson correlation for all 

variables are between (0.006 - 0.110). 
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Table 3.5. Collinearity check using VIF test  

Dependent Variable: agescale 

Predictors: (Constant), Region, Result2, Status, Gender, Result date, District 

To assess the presence of multicollinearity, the Variance Inflation Factor (VIF) was used 

after transforming categorical variables into dummy variables. A VIF value greater than 10 is 

generally considered an indication of high multicollinearity, while a value exceeding five may 

warrant concern. The VIF values in this model were below five, indicating minimal 

multicollinearity and no need to remove any variables. 

 

3.3.4 Symptoms of COVID-19  

 

The following table describes the distribution of individuals who stayed in the ICU (the second 

dataset). 

Table 3.6. The characteristics of a sample of hospitalized COVID-19 patients 

  Frequency Percent 

Hospital Hebron Governmental Hospital 141 43.9 

Palestine Medical Complex 132 41.1 

Darwish Nazzal 12 3.7 

Jenin Hospital 6 1.9 

Beit Jala Hospital 24 7.5 

Yatta Hospital 6 1.9 

Total 321 100.0 

Variable VIF 

Result2 1.016 

Gender 1.009 

Result date 1.027 

Status 1.004 

District 1.035 

Region 1.052 
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  Frequency Percent 

District Hebron 141 43.9 

Ramallah 132 41.1 

Qalqilya 12 3.7 

Jenin 6 1.9 

Beit Jala 24 7.5 

Yatta 6 1.9 

Total 321 100.0 

  Frequency Percent 

icu_ type Cardiac Intensive Care 

Department 

144 44.9 

Intensive Care Department 129 40.2 

COVID Intensive Care 

Department 

48 15.0 

Total 321 100.0 

  Frequency Percent 

The need for 

oxygen O2 

No 81 25.2 

Yes 240 74.8 

Total 321 100.0 

  Frequency Percent 

Respiration Low respiration 75 23.4 

Moderate respiration 90 28.0 

High respiration 156 48.6 

Total 321 100.0 

  Frequency Percent 

White Blood 

Cells 

Not recording 6 1.9 

Low 18 5.6 
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Normal 102 31.8 

High 195 60.7 

Total 321 100.0 

  Frequency Percent 

Gender Male 198 61.7 

Female 123 38.3 

Total 321 100.0 

  Frequency Percent 

Temperature Not recording 3 0.9 

Low 9 2.8 

Normal 141 43.9 

High 168 52.3 

Total 321 100.0 

  Frequency Percent 

High blood 

pressure 

Not recording 12 3.7 

Low blood pressure 72 22.4 

Normal blood pressure 65 20.2 

High blood pressure 172 53.6 

Total 321 100.0 

  Frequency Percent 

Oxygen 

saturation 

(SPO2) 

Risk 189 58.9 

No risk 132 41.1 

Total 321 100.0 

  Frequency Percent 

Radiology MRI 87 27.1 

ECG 33 10.3 

ECHO 33 10.3 
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XR 15 4.7 

No 153 47.7 

Total 321 100.0 

  Frequency Percent 

The patient’s 

clinical 

condition 

changes over 

time 

Worse 117 36.4 

Worse then better 54 16.8 

Better 150 46.7 

Total 321 100.0 

  Frequency Percent 

Symptoms 

over time 

Decrease 182 56.7 

Increased 139 43.3 

Total 321 100.0 

  Frequency Percent 

Tired No 79 24.6 

Yes 242 75.4 

Total 321 100.0 

  Frequency Percent 

Shortness of 

Breath 

(SOB) 

No 55 17.1 

Yes 266 82.9 

Total 321 100.0 

  Frequency Percent 

Cough No 127 39.6 

Yes 194 60.4 

Total 321 100.0 

  Frequency Percent 

Intensive No 48 15.0 
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care unit(on 

bed) 

Yes 273 85.0 

Total 321 100.0 

  Frequency Percent 

Diagnosis Stay ICU 162 50.5 

Leave ICU 159 49.5 

Total 321 100.0 

  Frequency Percent 

Eosinophil Low 54 16.8 

Normal 123 38.3 

High 144 44.9 

Total 321 100.0 

  Frequency Percent 

Vaccine No 198 61.7 

Yes 123 38.3 

Total 321 100.0 

  Frequency Percent 

Chronic 

diseases 

No 46 14.3 

Yes 275 85.7 

Total 321 100.0 

  Frequency Percent 

Test type Rapid 96 29.9 

PCR 84 26.2 

Both 141 43.9 

Total 321 100.0 

  Frequency Percent 

Result Died 72 22.4 
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Sent back home 42 13.1 

Referred to another 

governmental or private 

hospital 

48 15.0 

Improved 159 49.5 

Total 321 100.0 

  Frequency Percent 

Number of 

days 

less than 4 32 10.0 

4 to 10 104 32.4 

11 to 20 59 18.4 

More than 20 126 39.3 

Total 321 100.0 

  Frequency Percent 

Type of 

chronic 

disease 

No 12 3.7 

Heart disease 87 27.1 

Diabetes 28 8.7 

Liver diseases 6 1.9 

Hypothyroidism 22 6.9 

Kidney disease 11 3.4 

Lung diseases 23 7.2 

Blood diseases 72 22.4 

Orthopedic diseases 5 1.6 

Cancer 16 5.0 

Morbid obesity 6 1.9 

Not recording 33 10.3 

Total 321 100.0 

  Frequency Percent 

Doctors 

opinion 

Not very well or died 88 27.4 

Change condition or drugs 99 30.8 
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Well 134 41.7 

Total 321 100.0 

  Frequency Percent 

Type drugs Antibiotic 138 43.0 

Heart drugs 48 15.0 

Else 135 42.1 

Total 321 100.0 

  Frequency Percent 

Age_ MOH Childhood (0-17) 10.00 3.12 

Adolescence (18-25) 8.00 2.49 

Youth (26-65) 177.00 55.14 

Middle-aged (66-79) 91.00 28.35 

 Seniors (80-90) 29.00 9.03 

 Centenarians (91 and above) 6.00 1.87 

 Total 321.00 100.00 

 

Table 3.6 describes the distribution of those infected with COVID-19 and who were 

hospitalized. The table shows that the majority of individuals infected with COVID-19 and 

hospitalized were treated at Hebron governmental hospital (43.9%) and Palestine medical 

complex (41.1%). The percentage of patients at other hospitals, such as Darwish Nazzal hospital, 

Jenin hospital, Beit Jala hospital, and Yatta hospital, is much lower, ranging from 1.9% to 7.5%. 

This suggests that these two hospitals may have been the primary hospitals for treating COVID-

19 patients in the country. 

The data in the table suggests that the district variable had a consistent percentage across 

all categories. For the ICU type variable, the cardiac intensive care department had the highest 

percentage at 44.9%, followed by the intensive care department at 40.2%, and the lowest 

percentage was for the COVID-19 ICU department at 15%. The table also shows that 74.8% of 

patients require oxygen, while 25.2% do not. In terms of respiration, 23.4% of patients require 

low respiration, 28% require moderate respiration, and 48.6% require high respiration. This 
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indicates that a majority (48.6%) of patients require high levels of respiratory support, and a 

significant portion (51.4%) require either low or moderate levels of respiratory support. 

This data suggests that a higher percentage of individuals had high white blood cell 

counts. A smaller percentage of individuals had normal white blood cell counts (31.8%), and an 

even smaller percentage had low white blood cell counts (5.6%). The females had a lower 

percentage (38.3%) compared to males with the majority being male (61.7%). 

This sample suggests that a higher percentage of individuals had a high temperature 

(52.3%) and high blood pressure (53.6%). A smaller percentage had a normal temperature 

(43.94%) and normal or low blood pressure (22%). 

The table shows higher percentage of individuals had normal oxygen saturation (58.9%) 

and a lower percentage had no-risk (41.1%). In radiology, half of the patients did not do any 

radiology, a small percentage did ECG and echo radiology (10.3%), and an even smaller 

percentage did x-ray (4.7%). The patient’s clinical condition change over time, about half of 

them showed improvement (46.7%), while a smaller percentage had worse condition (36.4%). 

About half of the patients had stable symptoms over time (56.7%), while the other half 

had increased symptoms (43.3%) while they were in the ICU. Additionally, the results show that 

most of the patients were tired (75.4%), while a smaller percentage reported not being tired 

(24.6%). 

The variable “shortness of breath” indicates that (52.9%) of patients in the sample 

experienced shortness of breath, while (17.1%) did not experience it. For the variable “cough,” 

(60.4%) of the sample had a cough while (39.6%) did not. The results showed that most of the 

patients in the sample were still in bed in the ICU, as 85% of the sample was in that category. 

For the “diagnosis” variable, half of the patients stayed in the ICU, at 50.5%, while the other 

half, at 50%, and were discharged from the ICU. 

The results of the sample indicate that a high eosinophil count was present in 44.9% of 

patients, while a normal eosinophil count was present in 38.3% of patients. For the “vaccine” 

variable, 61.7% of patients did not receive a vaccine, while 38.3% did receive one. 
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For the “chronic disease” variable, 85.7% of patients had a chronic disease, which is a 

high percentage. In terms of testing, the doctors in the hospital performed both rapid and PCR 

tests for 43.9% of the sample. Specifically, 29.9% of the sample had a rapid test and 26.2% had a 

PCR test. The results for the patients in the sample showed that 49.5% of patients improved as 

per the doctors’ observations, 22.4% of the patients died, and 30.2% were referred to another 

government or private hospital or sent home. The number of days that patients stayed in the ICU 

varied, starting from 3 days to 83 days. To analyze this data, patients were divided into 

categories. The first category, less than 4 days stayed in the ICU, represented about 10% of the 

sample. The second category, 4 to 10 days, represented 32.4% of the sample. The third category, 

more than 10 days, represented about half of the patients in the ICU. 

The “age” variable for the sample patients ranges from one year to over 100 years, so it 

was divided into categories. The first category, less than 25 years, represented about 5.6% of the 

sample. The second category, 25 to 49 years, represented 18.1% of the sample. The third 

category, 50 to 75 years, represented 57% of the sample, and the last category, over 75 years, 

represented 19.3%. The age variable was categorized into six main groups based on the WHO 

age division, which include childhood (0-17) at 3.12%, adolescence (18-25) at 2.49%, youth (26-

65) at 55.14%, middle-aged (66-79) at 28.35%, seniors (80-90) at 9.03%, and elderly (91 and 

over) at 1.87%. This classification transformed age from a numerical variable to a categorical 

variable. 

The average number of days that patients stay in the intensive care unit in the hospitals 

under study was 19.6 days. For the “type of chronic disease” variable, the most common disease 

among patients was heart disease, accounting for 27.1% of the sample. The second most 

common was blood disease, accounting for 22.4% of the sample. Other diseases such as diabetes, 

high hypothyroidism, lung disease, and cancer represented a percentage between 5-7.2%. 

 

The “doctors’ opinions” variable was divided into three categories: “not very well or 

died,” “change condition or drugs,” and “well.” The highest percentage, 41.7%, was for the 

“well” category, followed by “change condition or drugs” at 30.8%, and “not very well or died” 

at 27.4%. The final variable was the “type of drugs” given to patients. Antibiotics were given to 

43% of the sample, and heart drugs were given to 15% of the sample. 
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3.3.5 Multicollinearity check  

To build a model for the severity of symptoms, the correlation between the variables, which are 

white blood cells, the need for oxygen, and the length of stay in the intensive care unit, must be 

examined. 

 

Table 3.8. The correlation matrix for the variables of Severity of symptoms 

The need for oxygen O2 Pearson Correlation .378** 

Sig. (2-tailed) <.001 

Respiration Pearson Correlation .480** 

Sig. (2-tailed) <.001 

White Blood Cells Pearson Correlation .576** 

Sig. (2-tailed) <.001 

Temperature Pearson Correlation .480** 

Sig. (2-tailed) <.001 

Oxygen saturation (SPO2) Pearson Correlation -.141 

Sig. (2-tailed) .011 

Radiology(MRI) (X-ray)(ECG)(ECO) Pearson Correlation .231** 

Sig. (2-tailed) <.001 

The patient’s clinical condition changes 

over time 

Pearson Correlation -.280* 

Sig. (2-tailed) <.001 

Symptoms over time Pearson Correlation .279** 

Sig. (2-tailed) <.001 

Tired Pearson Correlation .340** 

Sig. (2-tailed) <.001 

Shortness of Breath (SOB) Pearson Correlation .332** 

Sig. (2-tailed) <.001 

Cough Pearson Correlation .470** 

Sig. (2-tailed) <.001 

Intensive care unit(on bed) Pearson Correlation .314** 

Sig. (2-tailed) <.001 

Number of days Pearson Correlation .439** 

Sig. (2-tailed) <.001 

** The significant ( p < 0.01) 

 

The table indicates that the Pearson correlation coefficient is good between these 

variables and is statistically significant. 
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3.4 Classification and Prediction Models  

 The main aim of ML algorithms is to build systems based on historical data to 

predict future events. ML algorithms are divided into three main categories: supervised, 

unsupervised, and reinforcement learning  (Alloghani et al., 2020).  

In this work, we will use and compare the performance of the following supervised ML 

algorithms: (Logistic Regression, SVM, RF, and ANNs), the following includes a brief 

description of these algorithms. 

To build the predictive models, we will use the available datasets from the PMoH to build 

predictive models to predict the severity of symptoms of COVID-19. We will use the available 

data to split it into training/test sets. The training set will be used to train the models and the test 

set to test the performance of the generated models. The performance of the generated models 

will be measured using the Accuracy, Sensitivity, Recall, F-score and Specificity measures. 

3.4.1 Binary Logistic Regression  

A binary logistic regression is used in this work to model the probability of contracting 

COVID-19. The logistic regression depends on the process of converting the binary variable in 

the study into a log as follows  

ln(
p

1 − p
) = β0 +  β1 x1 + β2 x2 + ⋯ +  βk xk … … … … … … … … (1) 

where p is the probability (likelihood) of contracting COVID-19. The predictor variables 

(x1, x2, … , xk) include age, gender, the number of wave, cause of conducting COVID-19 test, 

status, C.T., District and locality type. The sample of the corresponding datasets includes all 

individuals who conduct any COVID-19 test. 

3.4.2 Ordinal Logistic Regression 

Ordinal logistic regression is mainly appropriate when the categorical outcome of more 

than two classes can be ordered in a natural way such as severity status “good”, “moderate”, 

“bad”. This type of regression will be used to model the severity of COVID-19 symptoms. Let πj 

denote the ordinal probability of an observation falling in the jth ordinal category (level of 

severity). The equation of the logistic regressions model for ordinal response is given by; 
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log[
πj(xi)

πk(xi)
] =  α0i +  β1jx1i +  β2jx2i + ⋯ +  βpjxpi … … … … … … … … . (2) 

 

the set of explanatory variables include (the need for oxygen O2, Respiration, White 

Blood Cells, Temperature, Oxygen saturation (SPO2), Radiology, the patient’s clinical condition 

changes over time, Symptoms over time, Tired, Shortness of Breath (SOB), Cough, Intensive 

care unit (on bed), Number of days, doc_opinion)  

3.4.3 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are used in various ML and Data Mining applications. 

They can be used for classification and regression problems. SVMs work by projecting the data 

into higher dimensional feature spaces especially if the data is complex and/or the data is non-

linearly separable (Cortes & Vapnik, 1995) 

It is a method that combines statistical theory and directed education. The idea of SVMs 

is formulated as a search problem that divides data into two groups. The hyperplane should have 

the ability to separate the data whether it is linearly separable or not. If the data is not linearity 

separable, then SVMs will use the kernel trick to be able to divide the groups of data.  

Figure 3.1. Classification using Support Vector Machines (linear separation case) (Meyer, 2015). 

The task of the kernel is to project the features into higher dimensional feature spaces. 

However, choosing these parameters at random may lead to errors in the classification process in 

many cases if they are not chosen correctly (Meyer, 2015) 
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Various kernels exist in the literature such as the Polynomial, Sigmoid, Radial Basis 

Function (RBF), and many others. SVMs use training data to create separation hyperplane that 

separate that data into different classes. A hyperplane can be seen as a surface that separates data 

points falling on different sides (Bennett & Campbell, 2000). 

SVMs works for binary classification problems but can be extended for multiclass 

classification using one-against-one and one-against-all techniques SVMs are one of the most 

important techniques used in data classification as they depend on multiple factors and variables 

that directly or indirectly affect finding the final solution. For example, the SVMs model depends 

on some basic parameters such as the hyperplane and Lagrange multipliers, which greatly affect 

the accuracy of the classification process, as the basic data in the input space are classified 

according to the following mathematical model:  

wTxi + b ≥ +1 for di =  +1 , i = 1, 2, … , N … … … … … … … . . (3) 

wTxi + b ≤  −1 for di =  −1 , i = 1, 2, … , N … … … … … … … .. (4) 

where w is the weights vector, x represents the input vector, b represents the Bias value, and d 

represents the output value (Bennett & Campbell, 2000)  

We note that the hyperplane equation is written as: 

wTxi + b =  0 … … … … … … … … ..(5) 

The boundary equations can also be seen in the plane as shown in figure 3.10 

 

Figure 3.2. The Support Vector Machines (Ocak, 2013) 
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The data points that are close to or lie at the boundaries of the hyperplane are called the 

support vectors. The distance between points in the plane and the equation of the interval plane 

can also be calculated through the following relationship: 

d(w, b, xi) =  
|wT xi+b|

‖w‖
 …………………(6) 

And after mathematical transformation of the SVMs, the values of each of the ideal 

weights vector (w∗) and the ideal bias (b∗) are found and the classification function is calculated 

as follows: 

f(x) = sign(w∗. x +  b∗) ………………….(7) 

 

In which ( w∗) represents the ideal weight, ( b∗) represents the ideal bias value, and (sign) 

represents the final decision to belong ( x ) to any of the categories. 

3.4.4 Random Forest (RF) 

RF was introduced by (Breiman, 2001) who was inspired by earlier work by (Amit & 

Geman, 1997). RF is a supervised learning technique that is based on the concept of bagging, in 

which many decision tree classifiers are combined together to create a stronger classifier with 

better performance in terms of classification/regression. RFs are used for classification and 

regression tasks. RF has been used extensively in many applications due to its strength in 

applications (Pal, 2005). 

A Random Forest classifier may contain many decision trees on different subsets of a 

given data sets. Unlike a single decision tree, the final prediction is taken from each tree and the 

majority of votes decide the final output.  

The following figure shows how RF algorithm works. 
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Figure 3.3. Schematic illustration of how the Random Forest algorithm for binary 

classification of variable (Liu et al., 2012) 

“OOB” stands for “out-of-bag” and it is a method used in random forest models for 

estimating the accuracy of the model. In random forest models, multiple decision trees are built 

using a subset of the available data. Each tree is constructed using a different subset of the data, 

called a “bootstrap sample”, which is created by randomly selecting data points with 

replacements from the original dataset. The out-of-bag samples refer to the data points that are 

not included in a particular bootstrap sample. These out-of-bag samples are used to estimate the 

performance of the random forest model. For each data point in the out-of-bag sample, the model 

is evaluated using only the trees that did not use that data point in their construction. The 

accuracy of the model is then calculated as the proportion of correctly classified out-of-bag 

samples. 

Using the out-of-bag samples for model evaluation is a useful method for estimating the 

accuracy of a random forest model, as it provides an unbiased estimate of the model’s 

performance without the need for a separate validation set. This can be particularly useful when 

the dataset is small or when it is important to use all of the available data for training the model 

(Bernard et al., 2012). 

3.4.5 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are inspired by the study of the neural system 

(Rosenblatt, 1958).  
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The architecture of Neural Networks consists of several layers of artificial nodes. These 

layers are identified as an input layer, an output layer, and a number of hidden layer(s) that reside 

between the input and output layers. Each node, also called a neuron, in one layers is connected 

to all other neurons in the next layer. This is especially in the case of fully-connected Neural 

Network. This is shown in the figure 3.4 below. 

 

Figure 3.4. General description of a simple architecture of an Artificial Neural Network (O’Shea & 

Nash, 2015). 

Each connection between one neuron and another is characterized by its association with 

a value called a weight. The weights decide the importance of features and are adjusted during 

the learning process of the network. In its simplest implantation, a neuron multiplies each 

incoming input value from the neurons of the previous layer with their associated weights and 

then add them together. The result is then passed to a function that will decide if the value will be 

passed to the next layer or not. Examples of such functions include the Sigmoid, Rectified Linear 

Unit, and Tangent Hyperbolic functions (Ashour, 2022). 

The architecture of an ANN defines the number of layers, the number of neurons in each 

layer, and the connections between neurons. ANN’s architecture plays a crucial role in 

determining its performance and ability to solve a given problem. It’s also important to note that 

different architectures may be better suited for different types of tasks or datasets. Multi-layer 

networks are very effective networks, especially those that include more than two layers. These 

networks can solve many complex problems, but they take longer to train (Wang, 2003). 
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3.4.6 Naive Bayes 

Naive Bayes is a popular machine learning algorithm that is used for classification tasks 

in many fields including spam filtering, text classification, and medical diagnosis to name a few. 

It is based on the principle of Bayes’ Theorem, which states that the probability of an event to 

occur is equal to the prior probability of the event multiplied by the likelihood of the event given 

the evidence (Raschka, 2014). 

One of the key features of Naive Bayes algorithm is its simplicity and ease of 

implementation. The name “naive” came from the assumption that that all features are 

independent of each other given the target class. This is not often the case in real-world data, but 

the algorithm still performs well in many situations and has been widely used in practice (Gao et 

al., 2019). 

The algorithm works by initially calculating the probability of the classes in the dataset 

based on their frequency in the training data. The algorithm then calculates the probability of 

each feature for each class using the frequency of a given feature in the training data for a 

particular class. Finally, these probabilities are combined to calculate the overall probability of 

each class given the input features. The class that results with the highest probability is then 

selected as the final prediction (Gao et al., 2019). 

One major advantages of the Naive Bayes algorithm is its computational efficiency. It is 

a fast and simple algorithm that can be trained on large datasets quickly. It also requires very 

little data preprocessing, making it easy to use in practice(Ray, 2019).  

There are a few limitations to the Naive Bayes algorithm. As mentioned earlier, the 

assumption of independence among features can lead to less accurate predictions in some cases. 

In addition, the algorithm can be sensitive to the presence of noisy or irrelevant features in the 

dataset. 

Despite these limitations, the Naive Bayes algorithm remains a popular choice for 

classification tasks due to its simplicity and strong performance in many situations. It is an 

important tool in the machine learning toolkit and continues to be widely used in practice 

(Raschka, 2014). 



 
 

45 
 

 

3.4.7  Evaluation Metrics  

To determine the performance of the generated models, it is necessary to use appropriate 

evaluation metrics to evaluate the generalization ability of the models.  

 There is a number of evaluation metrics including the confusion matrix, accuracy, 

sensitivity, specificity, precision, recall, F1-score or F-measure, and AUC-ROC curve (Jarrar, 

2021). 

3.4.7.1 The confusion matrix 

The confusion matrix contains all information about the actual and the predicted 

classification.  

 

Figure 3.5. The confusion matrix for classification systems. 

 

TP (True positive) is the number of correct predictions that an instance is positive. TN 

(True negative) represent the number of correct predictions that an instance is not positive (that 

is negative). FP (False positive) is the number of incorrect predictions that an instance is negative 

(incorrectly classified as a class of interest), FN (False negative) is the number of incorrect 

predictions that an instance is positive. 

 

3.4.7.2 Accuracy  

Accuracy measures the proportion of all predictions that were classifier correctly. It is 

used to measure the overall effectiveness of a classifier (Jarrar, 2021) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
… … … … . . (8) 
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3.4.7.3 Sensitivity 

Also called the True Positive Rate and it measures the proportion of positive examples 

that were correctly classified. For example, in the health domain, the ability of the model to 

detect ill patients who have the conditions. It is calculated as the number of true positives 

(correctly classified) divided by those correctly classified (TP) and those were incorrectly 

classified (FN). 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … … . (9) 

3.4.7.4 Specificity 

The specificity of a model is also called True Negative Rate. It measures the proportion 

of negative examples that were correctly classified. E.g., in the health domain, is the proportion 

of patients with no illness, known not to have the disease, who will test negative for it Calculated 

as the number of true negatives divided by the total number of negatives (TN and FP). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
… … … … … . (10) 

3.4.7.5 Precision  

Precision measures the proportion of true positive predictions among all positive 

predictions made by the model. It is calculated as the number of true positives divided by the 

total number of true positives plus false positives. Precision is useful for evaluating a model’s 

performance when the goal is to minimize false positives. For instance, in a medical diagnosis 

where a false positive could lead to unnecessary treatments or procedures. High precision means 

that the model is good at not classifying as positive a sample that is in reality negative. Precision 

is often used along with recall to evaluate the performance of a model. Together, precision and 

recall can provide a more comprehensive understanding of a model’s performance (Buckland & 

Gey, 1994). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛   =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … … … . (11) 
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3.4.7.6 Recall 

Recall measures the completeness of the results. It is also the true positive rate or 

sensitivity), It measures the proportion of positive examples that were correctly classified (from 

the dataset), and high recall indicates a large portion of positive examples captured in the model. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … … . . (12) 

3.4.7.7 F-score 

The F-score is a harmonic mean between the precision and recall. It has the advantage 

that it combines both the precision and recall in a single value. 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
… … … … . (13) 

 

 

3.5 Toolbox  

In this study, R1 is used as the main programming language. R offers various libraries and 

tools to statisticians and data scientists for loading data, data modeling, data visualization, data 

analysis, and ML algorithms.  

The system is running on Microsoft Windows 10 Pro. It is a HP Notebook with an 

Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz, 2 cores, and 4 logical processors. The system 

operates as a x64-based PC and has 8.00 GB of installed RAM.. 

 

  

                                                           
1 https://www.r-project.org/ 
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Chapter: Four Results  
4.1  Introduction 

There are two main objectives of this study. The first objective is to predict the 

probability of contracting COVID-19. The second goal is to detect the most variables that 

increase the severity of symptoms. The following subsections summarize the main results for 

both models.  

4.2 The likelihood of contracting COVID-19  

This section includes detailed results and accuracy measures of the classification 

algorithms that were used to predict the likelihood of contracting COVID-19. 

4.2.1 Binary logistic regression 

Binary logistic regression was applied using all independent variables. As noted in the 

analysis of deviance all variables were significant except the variable “Cause”.  

Table 4.1. The Correlation Matrix between the dependent variable (Result2) and 

independent variables in the likelihood of contracting COVID-19  

 

 Constant Gender 

Result 

date C.T. Status District Region Age 

Test 

Type 

S
tep

 1
 

Constant 1.000 .000 .000 -

1.000- 

-.811- .000 .001 .001 .001 

Age .001 -.030- .028 -.001- .000 -.006- .021 1.000 -.052- 

Gender .000 1.000 .000 .000 .000 -.038- -.005- -.030- -.050- 

Result date .000 .000 1.000 .000 .000 -.004- .131 .028 -.047- 

C.T. -1.000- .000 .000 1.000 .808 .000 -.001- -.001- -.001- 

Status -.811- .000 .000 .808 1.000 .000 -.001- .000 -.001- 

District .000 -.038- -.004- .000 .000 1.000 -.198- -.006- -.031- 

Region .001 -.005- .131 -.001- -.001- -.198- 1.000 .021 .031 

Test Type .001 -.050- -.047- -.001- -.001- -.031- .031 -.052- 1.000 
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Table 4.2. Model Summary for Nagelkerke R Square between a dependent variable 

(Result2) and independent variables in the likelihood of contracting COVID-19  

Model 1 Model  2  Model 3 

20% 13% 13% 

 

The relationship between the variables included in the model was very weak. Therefore 

there is no multicollinearity between them, which are variables independent of each other and do 

not affect each other. 

Naglkerke R-squared measures the goodness of model fit. It also describes the proportion of 

variance that the model successfully explains. In this case it is 20%, which is considered good. 

The model uses a baseline Logit Model. It represents the summary of the odds in one 

category relative to the baseline category which is in our case the “injured”. 

Confusion Matrix 

The main accuracy measures are as follows:  

Table 4.3. Classification table for confusion matrix for Binary Logistic Regression between 

the dependent variable (Result2) and independent variables in the likelihood of contracting 

COVID-19  

Observed Injured Not injured Accuracy sensitivity specificity 

Injured  69987 4126 98.9% 99% 98.8% 

Not injured 339 315874   

 

 

Binary Logistic Regression performed well in predicting the injured and since these classes 

are the most important in predicting the right result. 

After making sure that the dependent variable is not related to the independent variables, 

as well as the high ability of the modulator to interpret the dependent variable (predicting the 

patient’s injury), a simple adjustment will be made to the variables to improve the modulator’s 

ability to predict and compare the results as in table 4.4. The table shows four Models 

constructed with different sets of variables. In the discussion of the table below, each model is 
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examined and the rationale behind variable selection is highlighted with the significance of key 

findings and its implications on the research.  

 

Table 4.4. Factors affecting the likelihood of contracting COVID-19 under different set of 

models  

Variables  Categories of Variable                             Model 1 Model 2 Model 3 Model 4 

β  β β β 

Gender  (male) ***0.312 ***0.311 ***0.316 **0.336 

Result date  (first wave) -22.542 -22.543   

 (second wave) ***0.192 ***0.191   

 (third wave) 0.005 0.004   

 (fourth wave) **0.751 **0.752   

Period (wave 1 + wave2)   **-0.342 **-0.353 

(wave 3)   **-0.247 **-0.261 

Status  (New) ***1.741 ***1.742 ***1.911 ***1.901 

 (Follow up) ***1.419 ***1.420 ***1.721 ***1.711 

District  (Ramallah) 0.010 0.010 *0.418  

 (Bethlehem) -0.068 -0.065 0.351  

 (Hebron (AlKhalil)) -0.136 -0.135 0.118  

 (Jenin) -.044 -.043 *0.442  

 (Jericho) *0.505 *0.505 ***0.793  

 (Jerusalem) -.356 -.355 -0.073  

 (Nablus) -.137 -.137 0.297  

 (Qalqilia) -.146 -.144 0.286  

 (Tulkarm) -.302 -.299 0.167  

 (Tubas) -.082 -.081 *0.398  

 (Salfit) -.085 -.084 *0.421  

 (Yatta) 1.452 1.452 1.521  

Governorates Northern governorates    ***0.059 

 Middle governorates    ***0.062 

Region  (Urban) *0.058 *0.058 ***0.092 ***0.099 

 (Rural) ***0.154 ***0.153 ***0.258 ***0.240 

Test Type  (PCR) **0.664 **0.663 **0.630 **0.644 

Cause of test  (Contact with others) *-0.685 *-0.685 *-0.676 *-0.689 

 (Workers or travelers) **1.088 **1.087 **1.190 **1.158 
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 (Medical) *-1.071 *1.072 **1.017 *1.100 

Age Age **-0.006 ***-0.004 **0.005 **0.004 

Age square  Age square  *0.000 0.00 *0.000 

R2 18.8% 20% 13% 13% 

* p-value < 0.05 , ** p-value < 0.01, ***p-value < 0.001  

Period: divide the waves as: wave 1 + wave2, wave 3, wave 4+ wave 5 

The reference category is last  

 

Model 1 incorporates a specific set of independent variables, carefully chosen to capture 

relevant factors influencing the outcome. It is designed to explore the relationship between these 

variables and the dependent variable of interest, aiming to elucidate significant predictors. 

Moving on to Model 2, a different combination of independent variables is employed, reflecting 

an alternative approach to understanding the phenomenon under investigation. This model may 

focus on complementary aspects or address specific gaps in the knowledge obtained from Model 

1. Model 3 takes a unique perspective by incorporating a distinct set of variables, possibly drawn 

from different data sources or representing additional dimensions of the studied phenomenon. 

This model's analysis may shed light on previously unexplored factors contributing to the 

observed outcomes. Finally, Model 4 offers yet another perspective, encompassing a diverse 

range of variables that provide a comprehensive view of the research subject. This 

comprehensive approach aims to integrate multiple facets and explore their collective impact on 

the dependent variable.  

Model 1 includes all variables and shows that the variables of gender, result date, test 

type, cause of test, and age are statistically significant. The findings of Model 1 indicate that 

males have a higher probability of contracting COVID-19 compared to females. Additionally, 

the probability of contracting COVID-19 was higher during the second wave and fourth wave 

when compared to the fifth wave. The Status (New, Follow up) have a higher probability of 

contracting COVID-19 than the Resampling Status. Additionally, (Individuals living in Ramallah 

Jenin, Jericho, Tubas, Salfit) have higher probabilities of contracting COVID-19 than those 

living Gaza. The individuals who had a higher likelihood of COVID-19 infection were those 

whose diagnosis was confirmed through PCR testing, rather than those who were tested using the 

AG test.. Additionally, individuals living in urban areas  have a higher probability of contracting 

COVID-19 than those living in refugee Camps. Moreover, individuals who have different 

reasons to test for COVID-19 have a higher probability of contracting COVID-19 compared to 
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individuals who only have had contact with others or for medical reasons. As well, workers or 

travelers have a higher probability of contracting COVID-19 compared to individuals who have 

different reasons to test for COVID-19. Lastly, it is reported that as age increases by one year, 

the probability of contracting COVID-19 decreases by 0.6%. 

Model 2 includes all variables and shows that the variables of gender, result date, test 

type, cause of test, age, and age square are statistically significant. Model 2 differs from Model 1 

only in the addition of the squared age variable to improve the model. The results are the same as 

in Model 1, except that R-square in Model 2 is higher, indicating that the addition of the squared 

age variable improves the fit of the model. It is worth noting that the beta coefficients for the 

independent variables in Model 1 and Model 2 are almost equivalent. This is attributed to the 

inclusion of the squared age variable, which helped to maintain the coherence of the beta values. 

Age squared is sometimes used in binary logistic regression models as a way to capture 

potential non-linear relationships between age and the outcome variable. In other words, it 

allows for the possibility that the relationship between age and the outcome is not a simple linear 

one, but may have a curve or other non-linear shape. 

Model 3 contains all variables with the replacement of the result date variable with the 

period variable, and the age variable with the squared age variable. The results were better than 

Model 1. Model 3 indicates that males have higher probability of contracting COVID-19 

compared to females. Additionally, Based on the information provided, the probability of 

contracting COVID-19 is higher during the fourth and fifth waves compared to the combined 

first and second waves, as well as the third wave. This indicates that the later waves (fourth and 

fifth) have a greater likelihood of COVID-19 transmission compared to the earlier waves (first, 

second, and third), extending to the fifth wave.. The Status (New, Follow up) have a higher 

probability of contracting COVID-19 than the Resampling Status. Jericho has a higher 

probability of contracting COVID-19 than Gaza. The test type (PCR) has a higher probability of 

contracting COVID-19 than the test type (AG). Additionally, the Region (Region, Urban) have a 

higher probability of contracting COVID-19 than the Camp. Additionally, the individuals who 

have different reasons to test for COVID-19 have a higher probability of contracting COVID-19 

compared to individuals who only have had contact with others or for Medical reasons. Also, 

workers or travelers have a higher probability of contracting COVID-19 compared to individuals 
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who have different reasons to test for COVID-19. Lastly, it is reported that as age increases by 

one year, the probability of contracting COVID-19 increases by 0.5%. 

 

In Model 4, the governorates were categorizes into northern, central, and southern 

regions. Moreover, the original “district” variable was replaced with a new variable called 

“governorate”. The findings of this model indicated that, although the results were similar to 

Model 3, the probability of contracting COVID-19 was higher in the northern and central 

governorates compared to the other regions. Lastly, it is reported that as age increases by one 

year, the probability of contracting COVID-19 increases by 0.4%. 

 

Following are the main similarities and differences among the four models: 

 

Similarities. Model 1, Model 2, and Model 3 indicate that males have a higher probability of 

contracting COVID-19 compared to females. The test type PCR is consistently associated with a 

higher probability of contracting COVID-19 compared to the test type AG in all models. The 

variables “Status” (New, Follow up) consistently have a higher probability of contracting 

COVID-19 compared to “Resampling Status” across all models. In all models, individuals living 

in certain regions (Ramallah, Jenin, Jericho, Tubas, Salfit) have a higher probability of 

contracting COVID-19 compared to Gaza. The variables related to the reasons for testing for 

COVID-19 consistently show that individuals with different reasons (e.g., workers, travelers) 

have a higher probability of contracting COVID-19 compared to those who only had contact 

with others or for medical reasons. 

 

Differences. Model 1 and Model 2 differ in the inclusion of the squared age variable in Model 2, 

which improves the fit of the model. Model 3 replaces the “result date” variable with the 

“period” variable and the age variable with the squared age variable, resulting in improved 

results compared to Model 1 and Model 2. Model 4 introduces the categorization of governorates 

into northern, central, and southern regions, replacing the "district" variable with the 

“governorate” variable. It shows that the probability of contracting COVID-19 is higher in the 

northern and central governorates compared to other regions. Additionally, the reported 

percentages for the increase or decrease in the probability of contracting COVID-19 with age 
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differ slightly across the models: 0.6% decrease in Model 1, 0.5% increase in Model 3, and 0.4% 

increase in Model 4. 

Following modifications to the variables to improve the comprehensiveness of the study, 

it was observed that R2 had converged, indicating that the standard error had also converged for 

all three models. Also, based on the results above (betas), the highest positive coefficient is 

observed for the wave 4, thus The probability of contracting covid-19 was higher during the 

fourth wave followed by the second. Additionally, the beta values were found to be both correct 

and convergent. Notably, the fourth model yielded interpretational values for the combination of 

age and period that improved the prediction of COVID-19, suggesting a potential relationship. 

 

4.2.2 Naive Bayes 

      In this context, the Naive Bayes algorithm was used to analyze the likelihood of contracting 

COVID-19 based on whether individuals were infected or not. The results of this analysis were 

then mentioned in the statement. 

 The Naive Bayes algorithm, in the context of COVID-19, will predict the likelihood of an 

individual being infected based on their symptoms or other factors. 

Table 4.5. Naive Bayes results rank the importance of predictor variables in the likelihood 

of contracting the COVID-19 model. 

Subset Predictor Added Rank 

1 Result 4 

2 Status 5 

3 District 6 

4 Region 7 

5 agescale 1 

6 Gender 3 

7 period 2 

8 Cause of test 8 

9 Test Type 9 

  

  The results obtained from the Naive Bayes model for the variables are consistent with the 

results of the logistic regression analysis, which show that the age variable is highly important 

and is the first variable to predict the results of the infection and the spread of COVID-19. Then 
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came the wave variable, which represent is the wave in which infections with COVID-19 

occurred. Followed by the gender variable, then the result and status in which the test was 

performed, regardless if it was new or a re-test for COVID-19. The Naive Bayes model showed 

that the cause of the test and the type of test were the least important, ranking eighth and ninth 

consecutively, which contradicts the result of the regression analysis. 

Table 4.6. Confusion and Accuracy Matrix for Naive Bayes of the likelihood of the 

contracting COVID-19  

 

Sample Observed Injured Not Injured Accuracy Sensitivity Specificity 

Training Injured  56244 2506 98.2% 94.9% 98.8% 

Not Injured 3018 250492   

Testing Injured  14076 680 98.1% 94.8% 98.7% 

Not Injured 775 62535  

 

The sensitivity analysis of the model revealed that it was able to accurately predict the 

proportion of individuals infected with COVID-19 at 94.9%. The results of the positive test were 

also found to be high at 98.8%, while the specificity test was able to accurately predict the 

proportion of individuals who were not infected with COVID-19 with a high accuracy of 98.2% 

in both the training and testing data.  All of this indicates a high accuracy and high sensitivity of 

the Naive Bayes model in the prediction and classification of data according to infection and 

spread of COVID-19. 

In a model that predicts the presence or absence of a condition or disease, high 

sensitivity, and specificity values indicate that the model is performing well in accurately 

identifying individuals who have the condition (true positives) and those who do not have the 

condition (true negatives), respectively. 

Specifically, high sensitivity indicates that the model is able to correctly identify a high 

proportion of individuals who have the condition, and a low false negative rate, meaning that it 

rarely misses individuals who have the condition. 

On the other hand, high specificity indicates that the model is able to correctly identify a 

high proportion of individuals who do not have the condition, and a low false positive rate, 

meaning that it rarely identifies individuals who do not have the condition as positive. 
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In general, high sensitivity and specificity values are desirable because they indicate that 

the model is accurate and reliable in identifying the presence or absence of the condition or 

disease. 

 

4.3 The Severity of COVID-19 Symptoms  

The method used to calculate the severity of symptoms of COVID-19 infection is as 

follows: 

1) Standardize the scale for the variables that make up the severity of symptoms by measuring 

each variable relative to the highest value (maximum). 

2) Calculate the average of the variables to ensure that the result of the severity of symptoms 

does not exceed one . 

3) Determine the minimum and maximum value of the severity of symptoms and use the Likert 

triple scale to divide it into three categories: low, medium, and high severity symptoms. 

4.3.1  Predicting the severity of COVID-19 symptoms   

This section shows the details and accuracy measures for the classification algorithms 

that were used to predict the severity of symptoms. 

4.3.1.1 Ordinal logistic regression 

Ordinal logistic regression aims at estimating the probability of each level of the ordinal 

response variable (severity of symptoms) based on the values of the predictor variables. 

Table 4.9. Test of Parallel Lines for ordinal logistic regression  

Model 
-2 Log 

Likelihood Chi-Square df Sig. 

Intercept Only 3653.972    

Final 3404.616 249.356 35 <.001 

 

The null hypothesis states that the location parameters (slope coefficients) are the same 

across response categories. 

 

Table 4.10. Pseudo R-Square for Ordinal Logistic Regression 
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Model 1 

Severity )Subjective) 

Model 2 

Severity )Objective) 

0.82% 72% 

 

Naglkerke R-squared measures the goodness of model fit. It also describes the proportion of 

variance that the model successfully explains. In this case it is 20%, which is considered good. 

The model uses a baseline Logit Model. This means that the model represents the 

summary of the odds in one category relative to the baseline category. This is in particular the 

case of the “High-severity Level”. The following relationship map shows how each independent 

variable with high correlation affects the probability of each severity level. 

 

 

 
Figure 4.3. Relationship Map shows the Effect of the relationship plot of the independent variable 

on the severity-factor 

 

The Effect of the relationship plot shows how the change in the independent variable 

might affect the response probabilities and it is based on the used model. 
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The severity of COVID-19 symptoms is one of the main factors that determine the need 

for intensive care and the need to stay in an intensive care unit. 

 Patients with rare and mild symptoms can be treated at home. In particular, patients with 

mild respiratory tract inflammation can be treated at home using the natural treatment and 

medication.  

Patients experiencing severe respiratory tract inflammation necessitate intensive care 

unit treatment, while those with moderate-severity symptoms may receive treatment in a general 

care unit. When a patient begins to recover and their condition improves, their discharge from 

the intensive care unit is a manifestation of the observed progress. 

The discharge from the intensive care unit depends on the breathing rate that is being 

dealt with and the blood pressure rate that is being dealt with. If a patient is suffering from 

severe COVID-19 symptoms and is prepared for treatment in intensive care unit, the treatment 

available in this unit can help improve the patient’s condition and get rid of severe symptoms.  

Intensive care treatment can be intense and requires close monitoring and management 

by healthcare professionals. Once the patient’s condition improves and stabilizes, they may be 

transferred to a less intensive care setting or discharged to continue recovery at home. Follow-up 

care and rehabilitation may also be necessary to help the patient regain their strength and 

function. However, in some cases, the patient may experience severe and severe COVID-19 

symptoms, in which case it may be necessary for the patient to stay in the intensive care unit for 

a longer period. This treatment available in the intensive care unit may require a variety of drugs 

and medical interventions to alleviate severe symptoms.  

The severity of COVID-19 symptoms and the need for intensive care and hospitalization 

depend on the individual patient’s condition and the specific symptoms they are experiencing. 

4.3.1.2 The output of the Ordinal Logistic Regression:  

Ordinal Logistic Regression performs well in predicting the high, moderate & low 

severity of symptoms. 

 

Table 4.11. Confusion Matrix and Accuracy for Ordinal Logistic regression 
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Observed 

Predicted 

Low  Moderate  High  Accuracy  

Low  84 8 2 89.4% 

Moderate  11 58 9 74.4% 

High  5 9 135 90.6% 

Accuracy for all 31.2% 23.4% 45.5% 86.3% 

 

The Ordinal Logistic regression model has an accuracy of 86.3%, which means that it 

correctly predicts the class of 86.3% of the observations in the data. 

 

 

Table 4.12. Ordinal Logistics Regression is used to display the results of comparing the 

severity of COVID-19 symptoms predicted by the model with the severity of symptoms 

reported in medical reports by doctors in ICUs. 

Variables 

Model 1 

Severity 

)Subjective) 

Model 2 

Severity 

)Subjective) 

Model 3 

Severity 

)Subjective) 

Model 4 

Severity 

)Objective) 

Model 5 

Severity 

)Objective) 

Model 6 

Severity 

)Objective) 

β β β β  β β 

icu_ type Cardiac 

Intensive 

Care 

Department 

***-2.38 ***-2.38 **-2.22 ***-2.49 ***-2.48 ***-3.03 

Intensive 

Care 

Department 

***-3.62 ***-3.62 ***-3.43 ***-3.40 ***-3.39 ***-3.98 

Gender Male 0.29 0.29 0.41 0.12 0.12 0.15 

High blood 

pressure 

Not 

recording 

-0.48 -0.49 -0.61 0.48 0.47 0.40 

Low blood 

pressure 

-0.41 -0.40 -0.36 -0.77 -0.76 *-0.79 

Normal 

blood 

pressure 

0.38 0.39 0.40 0.27 0.28 0.11 

Eosinophil Low ***-3.71 ***-3.71 ***-3.62 *-0.96 *-0.96 -0.80 
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Normal ***-3.33 ***-3.33 ***-3.37 -0.21 -0.21 -0.07 

Vaccine No 0.15 0.17 0.29 **1.17 **1.18 **1.09 

Chronic 

diseases 

No -2.66 ***-2.66 ***-2.66 -0.59 -0.59 -0.77 

Type of 

chronic 

disease 

No -0.65 -0.64 -0.64 0.11 0.11 -0.01 

Heart 

disease 

0.86 0.86 0.91 0.49 0.49 0.59 

Diabetes 0.81 0.82 0.84 0.39 0.39 0.53 

Liver 

diseases 

-0.66 -0.65 -0.57 -0.81 -0.81 -0.62 

Hypothyroid

ism 

0.93 0.93 0.86 0.38 0.38 0.18 

Kidney 

disease 

0.11 0.11 0.13 0.04 0.04 -0.18 

Lung 

diseases 

1.03 1.04 1.02 0.64 0.64 0.53 

Blood 

diseases 

*1.10 *1.10 *0.99 0.57 0.56 0.50 

Orthopedic 

diseases 

0.53 0.53 0.45 0.04 0.06 -0.35 

Cancer 0.67 0.67 0.54 0.52 0.52 0.56 

Morbid 

obesity 

0.57 0.57 0.18 -0.81 -0.79 -1.66 

Type of 

drugs 

Antibiotic -0.06 -0.06 0.01 0.43 0.43 0.52 

Heart drugs -0.65 -0.66 *-1.00 -0.78 -0.79 **-1.04 

Age   -0.01 

 

-0.024  *0.01 0.063  

Age square    0.000   0.000  

Age- WHO Less than 17   1.85   ***23.65 

 18-25 -0.51 ***20.66 

 26-65 0.89 ***21.80 
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 66-91 1.38 ***22.42 

 80-90 0.62 21.79 

Hospital Hebron 

Government

al Hospital 

-1.02 -1.02 -1.07 ***-3.48 ***-3.48 **-3.31 

Palestine 

Medical 

Complex 

0.89 0.89 0.81 *-1.94 **-1.93 *-1.93 

Darwish 

Nazzal 

20.21 20.22 19.59 ***-3.51 ***-3.50 **-3.90 

Jenin 

Hospital 

-17.23 -17.21 -17.30 -21.40 -21.38 -19.35 

Beit Jala 

Hospital 

**-4.41 **-4.41 **-4.72 ***-4.04 ***-4.04 **-4.61 

Test type Rapid 0.62 0.62 0.55 -0.60 -0.60 *-0.75 

PCR ***-2.13 ***-2.13 ***-2.11 *-0.80 **-0.80 -0.59 

R2 
0.69 0.69 0.62 0.36 0.39 0.45 

 

Table 4.12 shows the results of two sets of models. The dependent variable in the first set 

(Model 1 to 3) is the subjective measure of severity while the dependent variable in the second 

set of models (Model 4 to 6) is the objective measure of severity. The results of Model 1 (with 

age as continuous variable) show that there are several factors that are statistically significant in 

determining the severity of COVID-19 symptoms. These includes the hospital where the patient 

is being treated (Yatta hospital has a higher probability of severe symptoms compared to Beit 

Jala hospital). The department where the patient is being treated (COVID-ICU has a higher 

probability of severe symptoms compared to the Intensive Care Department & Cardiac Intensive 

Care Department). The patient’s eosinophil levels high eosinophil levels have a higher probability 

of severe symptoms compared to low or normal levels. The type of test used (both test has a 

higher probability of severe symptoms compared to PCR test). And the patient has Blood 

diseases also have a higher probability of symptoms of severity COVID-19.  
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To address the potential non-linear relationship2 between age and the severity of 

symptoms variable, a new variable, “Age squared,” was incorporated in Model 2. The outcomes 

of Model 2 revealed that the beta values were similar to those obtained in Model 1. Furthermore, 

the statistical significance of the independent variables in Model 1 was unchanged in Model 2, 

and the interpretation of these variables remained the same. In Model 3, the age variable was 

categorized into six main groups based on the division adopted by the WHO for age. These 

groups include childhood (0-17), adolescence (18-25), youth (26-65), middle-aged (66-79), 

seniors (80-90), and centenarians (91 and above). It was discovered that there was no difference 

in the results compared to Models 1 and 2, except for the type of drug variation (heart drugs), 

which was found to be statistically significant. This showed that the severity of using other types 

of drugs was higher than that of heart drugs. 

as for the second set of the models, the findings of Model 4 suggest that patients treated 

at Yatta hospital have a higher probability of experiencing severe symptoms of COVID-19 

compared to those treated at Beit Jala Hospital, Hebron Governmental Hospital, Palestine 

Medical Complex, or Darwish Nazzal hospital. Additionally, patients in the COVID-ICU have a 

higher probability of experiencing severe symptoms compared to those in the Intensive Care 

Department or Cardiac Intensive Care Department, and individuals with high Eosinophil have a 

higher probability of experiencing severe symptoms compared to those with low Eosinophil. 

Individuals who have not been vaccinated have a higher probability of experiencing severe 

symptoms compared to those who have been vaccinated. 

The outcomes of Model 5 revealed that the beta values were similar to those obtained in 

Model 4. Furthermore, the statistical significance of the independent variables in Model 5 was 

unchanged in Model 5, and the interpretation of these variables remained the same except Age 

variable was statistical significance in Model 5. Lastly, it is reported that as Age increases by one 

year, the probability of severity of COVID-19 increases by 0. 1%. 

                                                           
2 In some ordinal logistic regression models, we have included a novel variable called "Age squared" to 

account for potential non-linear associations between age and the outcome variable. This additional variable 

accommodates the possibility that the relationship between age and the outcome may not be a straightforward linear 

one, but could exhibit a curved or non-linear pattern. 
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In Model 6, the age and age squared variables were replaced with the categorical age 

variable belonging to the World Health Organization. The ordinal logistic regression results 

showed an improvement over the results in Modules 4 and 5, except for the Eosinophil and test 

type variables. The statistical significance changed from PCR to rapid for the test type variable, 

and new variables such as the low blood pressure variable and the type of drug variable (heart 

drugs) were found to be statistically significant. The Age-MOH variable was particularly 

significant for the age groups of 0-79, as well as the test type variable (Rapid).  

The findings of Model 6 suggest that patients treated at Yatta hospital have a higher 

probability of experiencing severe symptoms of COVID-19 compared to those treated at Beit 

Jala Hospital, Hebron Governmental Hospital, Palestine Medical Complex, or Darwish Nazzal 

hospital. Additionally, patients in the COVID-ICU have a higher probability of experiencing 

severe symptoms compared to those in the Intensive Care Department or Cardiac Intensive Care 

Department. Individuals who have not been vaccinated have a higher probability of experiencing 

severe symptoms compared to those who have been vaccinated. 

The type of test used (both test has a higher probability of severe symptoms compared to 

Rapid test), the patient’s Type drugs (not recording levels have a higher probability of severe 

symptoms compared to Heart drugs levels). Finally centenarians (91 and above) have a higher 

probability of severe symptoms compared to age groups of 0-79. 

Differences between Objective (Models 4-6) and Subjective (Models 1-3) Measures of 

Severity: 

Dependent Variable: The dependent variable in the first set of models (Models 1-3) is the 

subjective measure of severity, while the dependent variable in the second set of models (Models 

4-6) is the objective measure of severity. Hospital and Department: In both sets of models, the 

hospital and department where the patient is being treated are found to be significant factors. 

However, the specific hospitals and departments mentioned may differ between the objective and 

subjective measures. Eosinophil Levels: Both sets of models indicate that high eosinophil levels 

have a higher probability of severe symptoms. However, the interpretation may differ between 

the objective and subjective measures. Test Type: Both sets of models suggest that the type of 

test used is a significant factor in determining the severity of COVID-19 symptoms. However, 
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the specific test types mentioned and their interpretation may differ between the objective and 

subjective measures. Blood Diseases and Type of Drugs: only the subjective models (Models 1-

3) indicate that patients with blood diseases and using other types of drugs have a higher 

probability of severe symptoms. Age Variable: in the subjective models, age is included as a 

continuous variable (Model 1), as a squared variable (Model 2), and categorized into age groups 

(Model 3). In the objective models, age is included as a continuous variable (Model 4), a 

significant variable (Model 5), and replaced with categorical age groups (Model 6). Vaccination 

Status: only the objective models (Models 4-6) state that individuals who have not been 

vaccinated have a higher probability of experiencing severe symptoms compared to those who 

have been vaccinated. Additional Variables: the objective models (Models 4-6) introduce 

additional variables such as low blood pressure and specific types of drugs (heart drugs) as 

statistically significant factors in determining the severity of COVID-19 symptoms. 

Similarities between Objective and Subjective Measures: 

Hospital and Department: Both sets of models indicate that the hospital and department, where 

the patient is being treated, are significant factors in determining the severity of COVID-19 

symptoms. Eosinophil Levels: Both sets of models indicate that high eosinophil levels are 

associated with a higher probability of severe symptoms. Test Type: Both sets of models suggest 

that the type of test used is a significant factor in determining the severity of COVID-19 

symptoms. Age: Age is included as a variable in both sets of models, although the specific 

treatment of age may differ (continuous, squared, or categorical) between the objective and 

subjective measures. Hospital Comparison: Both sets of models compare the severity of 

symptoms between different hospitals, with specific hospitals having a higher probability of 

severe symptoms compared to others. Department Comparison: Both sets of models compare the 

severity of symptoms between different departments, with certain departments having a higher 

probability of severe symptoms compared to others. Interpretation of Significant Variables: In 

both sets of models, the interpretation of statistically significant variables remains consistent 

throughout the models, except for the additional variables introduced in the objective models. 

Centenarians: Both sets of models indicate that individuals in the age group of 91 and above 

(centenarians) have a higher probability of severe symptoms compared to the age group of 0-79. 
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After reviewing the selection coefficients, R-squared values, and statistical significance, 

it was found that Model 3 is the best model for Severity (Subjective). For Severity (Objective), it 

was found that Model 6 is the best model, as it provides a more accurate representation of the 

likelihood of increasing symptoms of COVID-19 based on additional variables, with statistical 

significance and a realistic function. 

4.3.1.3 Support vector machines  

SVMs algorithm maps data points into a higher dimensional feature space and then finds 

the hyperplane that maximizes the margin between data points. The radial basis function (RBF) 

kernel is often used to map data especially if the data is not linearly separable. In this work, we 

use a 10-fold cross validation, which is a common method for evaluating the performance of a 

model as it allows for a more robust estimate of model performance by training and testing the 

model multiple times with different subsets of the data. Both parameters of the RBF kernel (the 

Cost and epsilon) are estimated through the cross-validation process. The cost parameter C 

controls the tradeoff between increasing classification accuracy and simplifying the complexity 

of the model and the epsilon parameter determines the width of the of the kernel function. 

  

Figure 4.4. The cost parameter C controls the tradeoff between maximizing classification accuracy 

and minimizing the complexity of the model 

It appears that as the value of the C parameter increases in the training data, the value of 

the error decreases, indicating that the SVM model is a good model for data with severe 

symptoms of COVID-19. This is because a high C value puts a stronger emphasis on correctly 

classifying the training data, which can lead to a model that generalizes well to unseen data with 

similar characteristics. 



 
 

66 
 

 

Figure 4.5. The effect of changing the cost parameters on the accuracy of the model using the RBF 

kernel 

 

 

 

 

The confusion matrix and the accuracy measures were as follows 

Table 4.13. Confusion Matrix the Accuracy measures for SVMs 

Measures Low Moderate High 

Sensitivity 0.0 70% 93% 

Specificity 1.0 82% 60% 

Balanced Accuracy 50% 70% 81% 

 

The model can accurately predict the outcomes for most of these patients based on the 

variables included in the model, which predicts with very good accuracy through SVMs the 

severity of the patient’s symptoms. 

4.3.1.4 Neural Network Classifier 

The analysis is based on the available data with few initial relationships, using neural 

network that shows relationships between variables and models based on the weight of each 

variable. Using this model to predict the variables that most affect the severity of COVID-19 

symptoms  

 

Table 4.7. Independent Variable Importance to predict the variables that most affect 

the severity of COVID-19 symptoms 
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Independent Variable Importance Importance Normalized 

Importance 

The need for oxygen O2 .066 34.7% 

Respiration .084 43.8% 

White Blood Cells .073 37.9% 

Temperature .122 63.8% 

Oxygen saturation (SPO2) .056 29.3% 

Radiology(MRI) (X-ray)(ECG)(ECO) .094 49.2% 

The patient’s clinical condition changes over time .052 27.3% 

Symptoms over time .039 20.5% 

Tired .057 29.9% 

Shortness of Breath (SOB) .049 25.5% 

Cough .043 22.2% 

Intensive care unit(on bed) .073 38.3% 

Number of days .191 100.0% 

 
Figure 4.1. Independent Variable Importance to predict the variables that most affect the severity 

of COVID-19 symptoms 

The neural network has determined that the number of days, temperature, and various 

radiology results (MRI, X-ray, ECG, ECO) are the most important variables in predicting the 

severity of COVID-19 symptoms, while respiration and symptoms over time are also important. 

The least important variable appears to be SPO2, which may not always be a reliable indicator of 

symptom severity. This suggests that using all of the variables in the model is important for 
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accurate predictions. Additionally, it highlights the importance of considering the number of 

days of stay in the ICU as a key factor in determining the severity of COVID-19 symptoms. 

 

 

 
Figure 4.2. Sensitivity and Specificity for ANN Classifier in the severity of COVID-19 symptoms 

The high prediction rate of 89% from the sensitivity and specificity tests suggest that the 

ANN algorithm is an effective method for predicting the severity of COVID-19 symptoms using 

the identified variables. This high prediction rate indicates the potential usefulness of this model 

for classifying patients into mild, moderate, and severe symptom categories, and for predicting 

the severity of symptoms in new cases. The ability of the model to classify data into low, 

moderate, and high severity based on the independent variables highlights the importance of 

using this model to aid in patient care and treatment decisions. 

 

Table 4.8. Confusion and Accuracy Matrix for Neural Network of the severity of 

COVID-19 symptoms 

 

Sample Observed 

Classification 

Low Moderate High Accuracy 

Training Low 15 3 0 83.3% 

Moderate 0 42 7 85.7% 

High 0 3 143 97.9% 

Accuracy 7.0% 22.5% 70.4% 93.9% 
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Testing Low 13 4 0 76.5% 

Moderate 0 18 4 81.8% 

High 0 2 67 97.1% 

Accuracy 12.0% 22.2% 65.7% 90.7% 

Dependent Variable: Severity_of_symptoms 

 

Based on the results of the model, it appears that ordinal logistic regression can be used 

to predict the severity of COVID-19 symptoms. This is consistent with previous studies that have 

identified the importance of white blood cell count, respiratory function, and oxygen needs as 

indicators of symptom severity. The high prediction rate from the model, along with its ability to 

classify symptoms into mild, moderate, and severe categories, suggests that ordinal logistic 

regression can be an effective tool for predicting COVID-19 symptom severity. Additionally, it 

is important to note that other variables such as days of stay in ICU, temperature and radiology 

results, symptoms over time and SPO2 also play an important role in determining the severity of 

symptoms. 

 

4.3.1.5 Random Forest 

In Random Forests, a collection of decision trees is created to infer the most important 

variables that entered to the model. The following models are tuned in RFs: 

mtry: the number of variables that are randomly sampled as candidates at each split. 

ntree: the number of trees to grow in the model. 

These parameters have the highest effect on model performance and the following figure 

shows the error for all dependent variable classes: 
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Figure 4.6. Error based on the number of trees in Random Forest stabilizes after a few trees, so 

choosing 400 or 500 trees is good enough. 

There is a relation between the number of trees and the error in the Random Forest. When 

the number of trees in the Random Forest is low, the error resulting from the number of trees in 

the Random Forest is relatively higher in terms of accuracy. On the other hand, if the number of 

trees in the Random Forest is high, the error resulting from the number of trees in the Random 

Forest is relatively lower in terms of accuracy.  

As shown in the previous figure, the error resulting from the number of trees decreases as 

the severity of COVID-19 symptoms increases. That is, the number of trees in the Random 

Forest, which is formed due to the large number of variables used in creating the tree in the case 

where the severity of COVID-19 symptoms is high. Accordingly, the error increases as the 

severity of COVID-19 symptoms decreases. That is, the Random Forest algorithm was able to 

predict the lowest possible error with the strength of COVID-19 symptom severity. The best 

value of the parameter mtry to set is 2 since it has the least OOB Error = 0.091. 



 
 

71 
 

 

Figure 4.7. Error based on mtry in Random Forest 

It appears that the lowest OOB error used by the Random Forest algorithm was 0.091, 

indicating a high prediction accuracy for the severity of COVID-19 symptoms using the current 

variables. The closer the OOB error is to zero, the higher the prediction accuracy. This suggests 

that the independent variables were very useful in predicting the severity of COVID-19 

symptoms in intensive care, based on the available data. 

 

 

 

The confusion and the accuracy measures are as follows: 

 

Table 4.14. Confusion Matrix & The Main accuracy measures for Random Forest 

Measures Low Moderate High 

Sensitivity 86% 86% 96% 

Specificity 99% 94% 87% 

Balanced Accuracy 84% 90% 92% 
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Figure 4.8 shows the mean decrease Gini-index which measures how much the model fit 

decreases when a variable is dropped. The greater the drop the more significant the variable is. In 

other words, it shows the importance of each variable in the generated forest.  

 

Figure 4.8. Mean Decrease Gini in RF for variable importance 

 

The results of the Random Forest algorithm show that after performing the appropriate 

classifications and divisions for decision trees, the accuracy is high and it was able to predict the 

most influential variables in the model.  

These variable should be taken seriously into consideration as they help doctors diagnose 

the patient’s condition, give the patient the appropriate medication. That was conducted based on 

Mean Decrease Gini in Random Forest for variable importance. 

We found that the most important variables for doctors to take seriously are the patient’s 

condition if they stay in the ICU, and then the test result and the patient’s condition reaching a 

specific development that can lead to death or hospitalization. The importance of diagnosing 

severity of symptom and the high blood pressure then test type, and the presence of other 

diseases in COVID-19 patients. 
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The results suggest that both ordinal logistic regression and Random Forest algorithm 

were able to predict symptom severity, with the latter being more accurate. The variables used by 

doctors were found to be important by both models, and contributed to the prediction of 

symptom severity. 

We use Random Forest for predicting the severity of COVID-19 symptoms because the 

algorithm relies on the Gini index for data splitting and feature selection. The Gini index 

evaluates the impurity in the dataset and minimizes the randomness, allowing the model to make 

more accurate predictions. Additionally, Random Forest utilizes the out-of-bag (OOB) samples 

during training, which acts as a validation set, providing an unbiased estimate of the model's 

performance without the need for a separate test set. This enables the model to generalize well to 

unseen data and enhances its overall predictive capabilities for COVID-19 symptom severity. 

Following is a table those summaries the accuracy of all classifications:   

Table 4.15. Confusion Matrix & the accuracy measures for the likelihood of contracting 

COVID-19  

Models  Accuracy Sensitivity Specificity 

Binary Logistic Regression  98.2% 99.6% 99.4% 

Naive Bayes 98.9% 94.9% 98.8% 

The table shows that comparison of Accuracy, Sensitivity and Specificity across COVID-

19 Contracting Likelihood Models: Naive Bayes Model Emerges as Best Performer with 

Variable Importance Ranking. 

Table 4.16. Confusion Matrix & the accuracy measures for the severity of symptoms of 

COVID-19  

Models  Accuracy Sensitivity Specificity 

Artificial Neural Network 90.9% 89% 89.1% 

Ordinal Logistic Regression 86.3% 84.1% 80.2% 

Support Vector Machine  81% 81.1% 80.2% 

Random Forest 91.7% 95.8% 85.2% 

 

The table shows that assessment of COVID-19 Symptom Severity Prediction Models: Random 

Forest Model excels in Accuracy, Sensitivity, and Specificity with Variable Importance Ranking.  
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Chapter Five: Discussion and Conclusion  

The previous chapter presented the analysis of data and the details of using Machine 

Learning algorithms in predicting the likelihood in contracting COVID-19 and to measure the 

severity of symptoms. The results indicated good performance in-terms of performance 

measures. This chapter will further interpret the results and policy implications will be made 

based on the findings. 

5.1 Discussion 

In this section, the results of each part of the study will be discussed in details. The 

discussion will begin with the results of the part related to the probability of contracting COVID-

19.  

Based on the results of the sample of individuals for the likelihood of infection with 

COVID-19, it was found that males have a higher probability of contracting COVID-19 than 

females. However, the exact reasons for this are still being studied and are not yet fully 

understood. Bwire (2020) stated that it could be due to various reasons such as sex hormones and 

different life style to men compared to women. Moreover, behavioral differences could be 

another factor. Males and females may differ in their behaviors, which could affect their 

likelihood of contracting the virus. For example, males may be more likely to engage in risky 

behaviors, such as not wearing a mask or social distancing, that could increase their exposure to 

the virus (Sanz-Muñoz et al., 2021). Lastly, occupational differences: males and females may 

also differ in the types of jobs they have and some occupations may put individuals at higher risk 

of exposure to the virus. For example, males are more likely to work in healthcare settings or 

jobs that require frequent interactions with others, which could increase their risk of contracting 

the virus (Coombs, 2020). However, this is still a debatable issue the main causes of why men 

have higher chance of contracting the disease the women is out of the scope of this research.  

Another result emerging from this study is worth highlighting is related to the type pf test. 

Individuals who conducted the PCR tests have a higher likelihood of detecting the virus than 

those who conducted the AG tests. This explains the reason may be that PCR (Polymerase Chain 

Reaction) tests are considered to be more accurate than AG (antigen) tests in detecting the virus 



 
 

75 
 

because they detect the genetic material of the virus, while AG tests detect specific proteins on 

the surface of the virus. PCR tests are able to detect very low levels of the virus, even if the 

person being tested is asymptomatic, while AG tests are more likely to produce false negative 

results. Additionally, PCR tests are able to detect if the virus is present in the early stages of the 

infection, while AG tests may not detect the virus until the person is already showing symptoms 

(Viloria Winnett et al., 2022). 

Additionally, individuals with specific reasons for testing, such as being workers or 

travelers, have higher likelihood of contracting the virus compared to those who have had 

contact with others because they are more likely to come into contact with a larger number of 

people in different settings and places, which increases the risk of being exposed to the virus. For 

example, workers in certain industries such as healthcare, transportation, and essential services 

are more likely to be exposed to the virus as they are in contact with many people, while 

travelers are more likely to come into contact with the virus during their travels. Also, 

individuals who travel to high-risk areas or have contact with high-risk groups, have a higher 

likelihood of contracting the virus compared to those who have had contact with others. 

The probability of contracting COVID-19 increases as age increases because as people get 

older, their immune systems become weaker and less able to fight off infections. Additionally, 

older adults are more likely to have underlying health conditions such as heart disease, diabetes, 

and lung disease which can make them more susceptible to severe illness if they contract 

COVID-19. Furthermore, older adults are more likely to live in congregate settings such as 

nursing homes, where the virus can easily spread among residents (Alexander et al., 2021). 

Based on the results above, the probability was higher in the fourth wave for several 

reasons. The first reason is that the virus has mutated and new variants have emerged which may 

be more transmissible and more resistant to current vaccines (L. Wang & Cheng, 2022). These 

new variants spread more easily and quickly than previous strains, leading to more people 

getting infected. Another reason is that many people have become complacent and less vigilant 

in following guidelines for preventing the spread of the virus, such as social distancing and mask 

wearing. This can lead to more interactions between people and more opportunities for the virus 

to spread. Also, some countries have eased the restriction and opened up their economies, 

leading to more gatherings and social interactions. Finally, the increasing availability and 



 
 

76 
 

distribution of vaccines, while helping to protect many people, has also led to a false sense of 

security among some, who may be more likely to engage in high-risk behaviors. 

Turning to the results related to the severity of symptoms, many points are worth 

emphasizing. Patients treated at Yatta hospital have a higher probability of experiencing severe 

symptoms of COVID-19 compared to those treated at Beit Jala Hospital, Hebron Governmental 

Hospital, Palestine Medical Complex, and Darwish Nazzal hospital. There could be various 

factors that contribute to this difference such as the population that the hospital serves, the level 

of care provided, the availability of resources, and the variation in patient demographics and 

underlying health conditions. It is important to conduct a thorough investigation and analysis to 

determine the causes for this difference in order to provide targeted interventions and improve 

outcomes for patients.  

Additionally, patients in the COVID-ICU have a higher probability of experiencing 

severe symptoms compared to those in the Intensive Care Department or Cardiac Intensive Care 

Department because they are specifically being treated for COVID-19, which is a highly 

infectious disease that can cause severe illness, including respiratory failure. The patients in the 

COVID-ICU have more advanced cases of illness and are more likely to require intensive care 

and specialized equipment. Additionally, the COVID-ICU is designed to take precautions to 

minimize the risk of virus spreading within the hospital, such as separating COVID-19 patients 

from other patients and implementing strict infection control measures, which can also contribute 

to patients experiencing more severe symptoms. Furthermore, patients in the COVID-ICU are 

more likely to have underlying health conditions that put them at a higher risk of severe illness. 

Furthermore, patients who have been diagnosed to leave ICU have a higher probability of 

experiencing severe symptoms compared to those who are staying in ICU, because the ICU is a 

high-risk environment that requires close monitoring and management of patients to ensure they 

are receiving optimum care during their stay. However, some patients are discharged from the 

unit prematurely, even though they may have a prolonged stay in the hospital. 

Another important result is related to the vaccination. Individuals who have not been 

vaccinated have a higher probability of experiencing severe symptoms compared to those who 

have been vaccinated, because vaccines work by training the immune system to recognize and 

fight the virus. When a person is exposed to the virus, their immune system can quickly produce 
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the necessary antibodies to prevent or lessen the severity of the disease. This is why vaccines are 

one of the best ways to protect patients from severe illness caused by COVID-19. Additionally, 

vaccines are particularly effective at protecting vulnerable individuals, such as the elderly and 

those with underlying health conditions, from severe illness and death. 

Individuals with high blood pressure (i.e., hypertension) may have a higher probability of 

experiencing severe symptoms from COVID-19 because hypertension can increase the risk of 

complications from viral infections such as pneumonia and Acute Respiratory Distress 

Syndrome (ARDS). High blood pressure can also put added stress on the heart and blood vessels, 

making it harder for the body to fight off the virus. Additionally, hypertension is a risk factor for 

other underlying health conditions such as diabetes and heart disease, which can also increase the 

risk of severe symptoms from COVID-19. 

 Individuals with high Eosinophil have a higher probability of experiencing severe 

symptoms compared to those with low Eosinophil, because high levels of eosinophils have been 

associated with severe COVID-19 symptoms and it is thought that eosinophils play a role in the 

inflammatory response to the virus. A heightened inflammatory response may contribute to the 

severity of symptoms. Additionally, eosinophils have been shown to have a role in viral 

infections and the immune response to them, and it is possible that individuals with high levels 

of eosinophils may have a stronger immune response to the virus that leads to more severe 

symptoms.  

If a patient does not have any recorded medical history by the doctors or nurses it could 

make it more difficult for the healthcare team to identify underlying health conditions that may 

put the patient at a higher risk for severe symptoms of COVID-19. Having a history of certain 

conditions such as heart disease, diabetes, hypothyroidism, lung diseases, or cancer can indicate 

that a patient may be at a higher risk for complications if they contract COVID-19. These 

conditions can affect the body’s ability to fight off the virus, or they may be associated with a 

higher risk of developing severe symptoms. Additionally, having a recorded medical history 

allows the healthcare team to more quickly and effectively make treatment decisions that could 

potentially reduce the risk of severe symptoms. Furthermore, patients who are taking other drugs 

prescribed by the doctors have a higher probability of experiencing severe symptoms compared 

to those who are taking heart drugs. It is possible that the patients who are taking other drugs 
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prescribed by the doctors have underlying health conditions, which are associated with a higher 

risk of severe symptoms of COVID-19. It is important to consider all the medications that a 

patient is taking when making treatment decisions, as some drugs may interact with others and 

have an impact on the patient’s overall health. 

Regarding age, there are several reasons why the elderly may have a higher severity of 

symptoms of COVID-19 infection. Firstly, as people age, their immune system becomes weaker, 

making it harder for them to fight off infections. Additionally, elderly individuals are more likely 

to have underlying health conditions that can make them more susceptible to severe symptoms of 

COVID-19. 

 

5.2 Conclusion 

This thesis highlights the importance of using machine learning in the health sector, 

particularly in the context of COVID-19. The study suggests that using machine learning 

algorithms can help predict the level of spread of the disease in Palestine and identify the most 

important variables that can help predict the severity of COVID-19 symptoms in the ICU unit in 

Palestinian hospitals. By automating the process, hospitals can receive real-time alerts when 

extreme values occur that indicate high symptom severity, allowing them to take immediate 

action.  

This approach can help save time and increase the accuracy of detecting symptom 

severity, as the speed of the spread of COVID-19 is based on a set of predicted variables. The 

study also showed that most of the models accurately predicted the strongest predictive variables, 

with accuracy values ranging between 80% - 99%, which indicate the strength and accuracy of 

the models. 

This study has provided valuable insights into the factors associated with the likelihood 

of contracting COVID-19 and the severity of the infection. The findings suggest that males, older 

individuals, and those with specific reasons for testing are at a higher risk of contracting the 

virus. The study has also highlighted the importance of using PCR tests for accurate detection of 

the virus and the need for targeted interventions to improve outcomes for patients in hospitals 
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and hospital departments. As the pandemic continues to evolve, further research and analysis 

will be necessary to better understand the virus and develop effective strategies to mitigate its 

impact. Moreover, this study highlights the importance of data and tracking data of patients in 

the healthcare sector as it showed how data collected during the pandemic can help in predicting 

various aspects of the outbreak (in our case the likelihood of contracting the disease and the 

severity of symptoms), which would help in decision makers to take the correct course of action 

and for better planning. Furthermore, this study can be used as a guideline for future studies in 

case of similar pandemics by utilizing new available data and the predictive power of machine 

learning algorithms to possibly predict the behavior of new outbreaks. 
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Appendix(B) ) R Codes 

#SVM (SEVERITY(1)_NON LINEAR) 

install.packages(“caret”) 

library(“caret”) 

attach(icu_num) 

data <- icu_num 

str(data) 

head(str) 

set.seed(3033) 

intrain <- createDataPartition(y=data$severity, p = 0.7, list = FALSE) 

trainig <- data[intrain,] 

testing <- data [-intrain,] 

dim(trainig) 

dim(testing) 

anyNA(data) 

summary(data) 

trainig[[“severity”]] = factor(trainig[[“severity”]]) 

trctrl <- trainControl(method = “repeatedcv”, number = 10, repeats = 3) 

set.seed(3233) 

library(e1071) 

model <- svm(severity ~ ., data = data) 

svm_linear <- train(severity~., data = trainig, method = “svmLinear”, 

 trControl = trctrl, 

 preProcess = c(“center”, “scale”), 
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 tuneLength = 10) 

#confusion matrix and prediction 

test_pred <- predict(svm_linear, newdata = testing) 

test_pred 

confusionMatrix(table(test_pred, testing$severity)) 

grid <- expand.grid(C = c(0,0.01,0.05,0.1,0.25,0.5,0.75,1,1.25,1.5,1.75,2.5)) 

svm_linear_Grid <- train(severity~., data = trainig, method = “svmLinear”, 

 preProcess = c(“center”, “scale”), 

 tuneGrid = grid, 

 tuneLength = 10) 

svm_linear_Grid 

plot(svm_linear_Grid) 

test_pred_grid <- predict(svm_linear_Grid, newdata = testing) 

test_pred_grid 

confusionMatrix(table(test_pred_grid, testing$severity)) 

##SVM (SEVERITY(2)_NON LINEAR) ALL DATA IN ICU 

install.packages(“caret”) 

library(“caret”) 

library(ggplot2) 

library(lattice) 

install.packages(“ggplot2”) 

attach(icu_for_r) 

data <- icu_for_r 

str(data) 

head(str) 

set.seed(3033) 

intrain <- createDataPartition(y=data$objective, p = 0.8, list = FALSE) 
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trainig <- data[intrain,] 

testing <- data [-intrain,] 

dim(trainig) 

dim(testing) 

anyNA(data) 

summary(data) 

trainig[[“objective”]] = factor(trainig[[“objective”]]) 

trctrl <- trainControl(method = “repeatedcv”, number = 10, repeats = 3) 

set.seed(3233) 

library(e1071) 

 

model <- svm(objective ~ ., data = data) 

svm_linear <- train(objective~., data = trainig, method = “svmLinear”, 

                    trControl = trctrl, 

                    preProcess = c(“center”, “scale”), 

                    tuneLength = 10) 

#confusion matrix and prediction 

test_pred <- predict(svm_linear, newdata = testing) 

test_pred 

confusionMatrix(table(test_pred, testing$objective)) 

grid <- expand.grid(C = c(0,0.01,0.05,0.1,0.25,0.5,0.75,1,1.25,1.5,1.75,2.5)) 

svm_linear_Grid <- train(objective~., data = trainig, method = “svmLinear”, 

                         preProcess = c(“center”, “scale”), 

                         tuneGrid = grid, 

                         tuneLength = 10) 

svm_linear_Grid 

plot(svm_linear_Grid) 
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test_pred_grid <- predict(svm_linear_Grid, newdata = testing) 

test_pred_grid 

confusionMatrix(table(test_pred_grid, testing$objective)) 

##### 

qplot(data$Chronicdiseases, data$Diagnosis, data = data, 

      color = data$objective) 

mymodel <- svm(objective~., data = data) 

summary(mymodel) 

plot(mymodel, data = data, 

     hospital~Chronicdiseases, 

     slice = list(Result = 3, EOSINPHILS = 4)) 

set.seed(123) 

tmodel <- tune(svm, objective~., data= data, 

               ranges = list(epsilon = seq(0,1,0.1), cost = 2^(2:9))) 

plot(tmodel) 

win.graph(12,4,12) 

plot(tmodel) 

____________________________________________________ 

 

#RANDOM FOREST 

library(randomForest) 

library(datasets) 

library(caret) 

library(lattice) 

data<-icu_num_all 

str(data) 

data$severity <- as.factor(data$severity) 
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table(data$severity) 

set.seed(222) 

ind <- sample(2, nrow(data), replace = TRUE, prob = c(0.7, 0.3)) 

train <- data[ind==1,] 

test <- data[ind==2,] 

#Random Forest 

rf <- randomForest(severity~., data=train, proximity=TRUE) 

print(rf) 

 

randomForest(formula = severity ~ ., data = train) 

p1 <- predict(rf, train) 

confusionMatrix(p1, train$severity) 

p2 <- predict(rf, test) 

confusionMatrix(p2, test$severity) 

plot(rf) 

#Type of Random Forest: classification 

 

confusionMatrix(table(p2, test$severity)) 

cm <- confusionMatrix(p1, train$severity) 

cm$sever[3,1] 

# Tune mtry 

library(randomForest) 

model_tuned<-tuneRF(x=data[,2:19],y=data$severity,ntreeTry = 3000,mtryStart = 3,stepFactor 

= 1.5,improve = 0.01,trace = TRUE) 

win.graph(20,12,12) 

model_tuned 
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# No. of nodes for the trees 

hist(treesize(rf), 

 main = “No. of Nodes for the Trees”, 

 col = “green”) 

# Variable Importance 

varImpPlot(rf, 

 sort = T, 

 n.var = 10, 

 main = “Top 10 - Variable Importance”) 

importance(rf) 

varUsed(rf) 

# Partial Dependence Plot 

partialPlot(rf, train, severity, “2”) 

# Extract Single Tree 

getTree(rf, 1, labelVar = TRUE) 

# Multi-dimensional Scaling Plot of Proximity Matrix 

MDSplot(rf, train$severity) 

 


